Concepts associés (48)
Racine primitive modulo n
Les racines primitives modulo n sont un concept issu de l'arithmétique modulaire, dans la théorie des nombres. Ce sont (lorsqu'il en existe) les générateurs du groupe des inversibles de l'anneau Z/nZ. Si n est un entier strictement positif, les nombres premiers avec n, pris modulo n, forment un groupe pour la multiplication, noté (Z/nZ) ou Z. Ce groupe est cyclique si et seulement si n est égal à 4 ou p ou 2p pour un nombre premier p ≥ 3 et k ≥ 0. Un générateur de ce groupe cyclique est appelé une racine primitive modulo n, ou un élément primitif de Z.
Subcategory
In mathematics, specifically , a subcategory of a C is a category S whose are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows. Let C be a category. A subcategory S of C is given by a subcollection of objects of C, denoted ob(S), a subcollection of morphisms of C, denoted hom(S).
Exponential field
In mathematics, an exponential field is a field that has an extra operation on its elements which extends the usual idea of exponentiation. A field is an algebraic structure composed of a set of elements, F, two binary operations, addition (+) such that F forms an abelian group with identity 0F and multiplication (·), such that F excluding 0F forms an abelian group under multiplication with identity 1F, and such that multiplication is distributive over addition, that is for any elements a, b, c in F, one has a · (b + c) = (a · b) + (a · c).
Théorème des unités de Dirichlet
En théorie algébrique des nombres, le théorème des unités de Dirichlet détermine, pour un corps de nombres K – c'est-à-dire pour une extension finie du corps Q des nombres rationnels –, la structure du « groupe des unités » (ou : groupe des inversibles) de l'anneau de ses entiers algébriques. Il établit que ce groupe est isomorphe au produit d'un groupe cyclique fini et d'un groupe abélien libre de rang où r désigne le nombre de morphismes de K dans R et r le nombre de paires de morphismes conjugués de K dans C à valeurs non toutes réelles.
Anneau sans diviseur de zéro
En théorie des anneaux, un anneau sans diviseur de zéro () est un anneau unitaire dans lequel un produit est nul seulement si l'un des facteurs est nul, autrement dit dans lequel l'implication suivante est vérifiée : En d'autres termes, c'est un anneau dans lequel il n'y a aucun diviseur de zéro (ni à droite, ni à gauche). Certains auteurs exigent également que la condition 1 ≠ 0 soit remplie ou, ce qui revient au même, que l'anneau ait au moins deux éléments.
Règle de Cramer
La règle de Cramer (ou méthode de Cramer) est un théorème en algèbre linéaire qui donne la solution d'un système de Cramer, c'est-à-dire un système d'équations linéaires avec autant d'équations que d'inconnues et dont le déterminant de la matrice de coefficients est non nul, sous forme de quotients de déterminants. En calcul, la méthode est moins efficace que la méthode de résolution de Gauss pour des grands systèmes (à partir de quatre équations) dont les coefficients dans le premier membre sont explicitement donnés.
Anneau topologique
En mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
Produit d'anneaux
En algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. Cette construction peut se faire de la manière suivante : si (Ai) est une famille d'anneaux, le produit cartésien Π Ai peut être muni d'une structure d'anneau en définissant les opérations composante par composante, i.e. (ai) + (bi) = (ai + bi) (ai) · (bi) = (ai · bi) 1 = (1) À la place de Π1≤i≤k Ai nous pouvons aussi écrire A1 × A2 × ... × Ak. Un exemple est l'anneau Z/nZ des entiers modulo n.
Algorithme d'Euclide étendu
En mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Irreducible element
In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. The irreducible elements are the terminal elements of a factorization process; that is, they are the factors that cannot be further factorized. The irreducible factors of an element are uniquely defined, up to the multiplication by a unit, if the integral domain is a unique factorization domain.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.