Notation bra-ketLa notation bra-ket a été introduite par Paul Dirac en 1939 (on l'appelle aussi formalisme de Dirac) pour faciliter l’écriture des équations de la mécanique quantique, mais aussi pour souligner l’aspect vectoriel de l’objet représentant un état quantique. Le nom provient d'un jeu de mots avec le terme anglais bracket qui signifie « crochet de parenthèse », en l'occurrence « » et « » qui avec l'adjonction d'une barre verticale « » sont respectivement appelés « bra » et « ket ».
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
ObservableUne observable est l'équivalent en mécanique quantique d'une grandeur physique en mécanique classique, comme la position, la quantité de mouvement, le spin, l'énergie, etc. Ce terme provient d'une expression utilisée par Werner Heisenberg dans ses travaux sur la mécanique des matrices, où il parlait de beobachtbare Grösse (quantité observable), et où il insistait sur la nécessité d'une définition opérationnelle d'une grandeur physique, qui prend mathématiquement la forme d'un opérateur.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Opérateur d'évolutionEn mécanique quantique, l'opérateur d'évolution est l'opérateur qui transforme l'état quantique au temps en l'état quantique au temps résultant de l'évolution du système sous l'effet de l'opérateur hamiltonien. On considère un hamiltonien composé de deux termes : où la dépendance temporelle est contenue dans . Quand , le système est complètement connu par ses kets propres et ses valeurs propres : Cet opérateur est noté et on a la relation, qui donne l'état du système au temps à partir du temps initial : où représente le ket au temps représente le ket au temps Pour le bra, on a alors la relation suivante : L'opérateur a les propriétés suivantes : C'est un opérateur linéaire est un opérateur unitaire ().
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
OrthogonalitéEn géométrie classique, l'orthogonalité est une propriété liée à l'existence d'un angle droit (orthos = droit, gônia = angle). Dans l'espace, deux droites sont orthogonales si elles sont chacune parallèles à des droites se coupant en angle droit ; deux perpendiculaires étant deux droites orthogonales et sécantes. Une droite est orthogonale à un plan si elle est orthogonale aux droites du plan. On parle de vecteurs orthogonaux pour des vecteurs directeurs de droites orthogonales et de segments orthogonaux pour des segments portés par des droites orthogonales.
Valeur moyenne (quantique)En mécanique quantique, la valeur moyenne, ou espérance quantique, est la valeur moyenne prédite pour le résultat d'une expérience. C'est un concept fondamental pour tous les domaines de la physique quantique. La physique quantique présente un comportement statistique fondamental : le résultat d'une mesure expérimentale ne sera pas, en général, le même si l'expérience est répétée plusieurs fois. Ce n'est que la moyenne statistique des valeurs mesurées dans un grand nombre de répétitions de l'expérience qui est une quantité reproductible.
Espace des positions et espace des momentsEn physique et en géométrie, espace des positions et espace des moments sont deux espaces vectoriels étroitement liés, souvent tridimensionnels, mais en général pouvant être de toute dimension finie. L'espace des positions (également espace réel ou espace des coordonnées) est l'ensemble de tous les vecteurs de position , qui ont les dimensions d'une longueur ; un vecteur de position définit un point dans l'espace (si le vecteur position d'une particule ponctuelle varie avec le temps, il tracera un chemin, la trajectoire d'une particule).