Quadrivecteur potentielEn physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
Introduction aux mathématiques de la relativité généraleLes mathématiques de la relativité générale sont complexes. Dans la théorie du mouvement de Newton, la longueur d'un objet et la vitesse à laquelle le temps s'écoule restent constantes même lorsque l'objet accélère. Cela signifie que de nombreux problèmes de mécanique newtonienne peuvent être résolus uniquement en utilisant l'algèbre. Mais en relativité, la longueur d'un objet et la vitesse à laquelle le temps s'écoule changent sensiblement à mesure que la vitesse de l'objet se rapproche de la vitesse de la lumière.
Tenseur électromagnétiqueLe tenseur électromagnétique, ou tenseur de Maxwell est le nom de l'objet mathématique décrivant la structure du champ électromagnétique en un point donné. Le tenseur électromagnétique est aussi connu comme : le tenseur d'intensité du champ électromagnétique ; le tenseur du champ magnétique ; le tenseur de Maxwell ; le tenseur de Faraday. Ce tenseur est défini dans le cadre du formalisme mathématique de la relativité restreinte, où aux trois dimensions spatiales est adjointe une dimension temporelle.
Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Symboles de ChristoffelEn mathématiques et en physique, les symboles de Christoffel (ou coefficients de Christoffel, ou coefficients de connexion) sont une expression de la connexion de Levi-Civita dérivée du tenseur métrique. Les symboles de Christoffel sont utilisés dans les calculs pratiques de la géométrie de l'espace : ce sont des outils de calculs concrets, par exemple pour déterminer les géodésiques des variétés riemanniennes, mais en contrepartie leur manipulation est relativement longue, notamment du fait du nombre de termes impliqués.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.