Concepts associés (17)
Nombre rationnel
Un nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Ouvert-fermé
En topologie, un ouvert-fermé est un sous-ensemble d'un espace topologique X qui est à la fois ouvert et fermé. Il peut sembler contre-intuitif que de tels ensembles existent, puisqu'au sens usuel, « ouvert » et « fermé » sont antonymes. Mais au sens mathématique, ces deux notions ne sont pas mutuellement exclusives : une partie de X est dite fermée si son complémentaire dans X est ouvert, donc un ouvert-fermé est simplement un ouvert dont le complémentaire est aussi ouvert.
Topologie induite
En mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Droite de Sorgenfrey
En mathématiques, la droite de Sorgenfrey — souvent notée S — est la droite réelle R munie de la topologie (plus fine que la topologie usuelle) dont une base est constituée des intervalles semi-ouverts de la forme [a, b[ (pour a et b réels tels que a < b). Robert Sorgenfrey l'a définie pour démontrer que le produit de deux espaces paracompacts n'est pas toujours paracompact ; c'est aussi un exemple simple d'espace normal dont le carré n'est pas normal.
Zero-dimensional space
In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. A graphical illustration of a nildimensional space is a point. Specifically: A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
Propriété topologique
En topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Espace localement compact
En topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Ensemble de Cantor
En mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Espace T1
En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Topologie quotient
En mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.