Point à l'infiniEn mathématiques, et plus particulièrement en géométrie et en topologie, on appelle point à l'infini un objet adjoint à l'espace que l'on veut étudier pour pouvoir plus commodément y définir certaines notions de limites « à l'infini », ou encore pour obtenir des énoncés plus uniformes, tels que « deux droites se coupent toujours en un point, situé à l'infini si elles sont parallèles ». La notion de point à l'infini apparait au dans le cadre du développement des méthodes de la perspective conique, avec l'invention de la « costruzione abbreviata » d'Alberti.
Real projective lineIn geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point.
Coloration de régionsLa coloration de régions est une technique de représentation des fonctions complexes. Le terme vient de l'anglais "domain coloring", inventé par Frank Farris aux alentours de 1998. La couleur avait déjà été utilisée plus tôt pour visualiser les fonctions complexes, en général en associant l'argument à la couleur. La technique consistant à utiliser une variation continue de couleur pour associer les points de l'ensemble de départ à l'ensemble d'arrivée ou au plan image a été utilisée en 1999 par George Abdo et Paul Godfrey.
BiholomorphismIn the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic. Formally, a biholomorphic function is a function defined on an open subset U of the -dimensional complex space Cn with values in Cn which is holomorphic and one-to-one, such that its is an open set in Cn and the inverse is also holomorphic. More generally, U and V can be complex manifolds.
Wheel theoryA wheel is a type of algebra (in the sense of universal algebra) where division is always defined. In particular, division by zero is meaningful. The real numbers can be extended to a wheel, as can any commutative ring. The term wheel is inspired by the topological picture of the real projective line together with an extra point ⊥ (bottom element) such as . A wheel can be regarded as the equivalent of a commutative ring (and semiring) where addition and multiplication are not a group but respectively a commutative monoid and a commutative monoid with involution.
Fonction méromorpheEn mathématiques, et plus précisément en analyse complexe, une fonction méromorphe est une fonction holomorphe dans tout le plan complexe, sauf éventuellement sur un ensemble de points isolés dont chacun est un pôle pour la fonction. Cette terminologie s'explique par le fait qu'en grec ancien, meros (μέρος) signifie « partie » et holos (ὅλος) signifie « entier ». Le théorème de factorisation de Hadamard affirme que toute fonction méromorphe peut s'écrire comme le rapport de deux fonctions entières (dont celle du dénominateur n'est pas identiquement nulle) : les pôles de la fonction correspondent aux zéros du dénominateur.
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
Géométrie conformeEn mathématiques, la géométrie conforme est l'étude de l'ensemble des transformations préservant l'angle (conformes) sur un espace. Dans un espace réel de dimension 2, la géométrie conforme est précisément la géométrie des surfaces de Riemann. Dans des espaces de dimension supérieure à 2, la géométrie conforme peut se référer soit à l'étude des transformations conformes de ce qu'on appelle les "espaces plats" (tels que les espaces euclidiens ou les sphères), soit à l'étude des variétés conformes qui sont des variétés riemanniennes ou pseudo-riemanniennes.