Concept

Anneau d'Ore

Concepts associés (8)
Noncommutative ring
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Anneau de Bézout
En algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.
Goldie's theorem
In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring R that has finite uniform dimension (="finite rank") as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of R. Goldie's theorem states that the semiprime right Goldie rings are precisely those that have a semisimple Artinian right classical ring of quotients.
Glossary of ring theory
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory. For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras.
Module plat
La notion de module plat a été introduite et utilisée, en géométrie algébrique, par Jean-Pierre Serre. Cette notion se trouve également dans un ouvrage contemporain d'Henri Cartan et Samuel Eilenberg en algèbre homologique. Elle généralise les modules projectifs et a fortiori les modules libres. En algèbre commutative et en géométrie algébrique, cette notion a été notamment exploitée par Alexander Grothendieck et son école, et s'est révélée d'une importance considérable.
Localisation (mathématiques)
En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.
Théorie des anneaux
En mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.
Anneau noethérien
En mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.