Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Centre du cercle d'EulerEn géométrie, le centre du cercle d'Euler, ou centre des neuf points est un centre du triangle, un point d'un triangle plat qui ne dépend que de l'existence du triangle. Son nom vient du fait qu'il s'agit du centre du cercle d'Euler ou cercle des neuf points, qui passe par neuf points caractéristiques du triangle : les milieux des trois côtés, les pieds des trois hauteurs et les points milieux entre les sommets et l'orthocentre. Le centre du cercle d'Euler est référencé par X(5) dans l'Encyclopedia of Triangle Centers de Clark Kimberling.
TriangleEn géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur. Lorsque les sommets sont distincts deux à deux, en chaque sommet les côtés délimitent un angle intérieur, d'où vient la dénomination de « triangle ». Le triangle est aussi le polygone le plus simple qui délimite une portion du plan et sert ainsi d'élément fondamental pour le découpage et l'approximation de surfaces.
BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
Formule de HéronEn géométrie euclidienne, la formule de Héron, portant le nom de Héron d'Alexandrie, permet de calculer l'aire S d'un triangle quelconque en ne connaissant que les longueurs a, b et c de ses trois côtés : La formule était déjà connue d'Archimède. Héron d'Alexandrie énonce et démontre son théorème dans son traité Les Métriques. Sa démonstration s'appuie sur les propriétés du cercle inscrit dans un triangle et sur l'exploitation des rapports de longueurs dans des triangles semblables.
Triangle équilatéralEn géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables. Chaque triangle équilatéral est invariant par trois symétries axiales et deux rotations dont le centre est à la fois le centre de gravité, l'orthocentre et le centre des cercles inscrit et circonscrit au triangle.
Medial triangleIn Euclidean geometry, the medial triangle or midpoint triangle of a triangle △ABC is the triangle with vertices at the midpoints of the triangle's sides AB, AC, BC. It is the n = 3 case of the midpoint polygon of a polygon with n sides. The medial triangle is not the same thing as the median triangle, which is the triangle whose sides have the same lengths as the medians of △ABC. Each side of the medial triangle is called a midsegment (or midline). In general, a midsegment of a triangle is a line segment which joins the midpoints of two sides of the triangle.
Loi des sinusEn trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Lemoine pointIn geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians (medians reflected at the associated angle bisectors) of a triangle. Ross Honsberger called its existence "one of the crown jewels of modern geometry". In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth point, X(6). For a non-equilateral triangle, it lies in the open orthocentroidal disk punctured at its own center, and could be any point therein.
Nagel pointIn geometry, the Nagel point (named for Christian Heinrich von Nagel) is a triangle center, one of the points associated with a given triangle whose definition does not depend on the placement or scale of the triangle. It is the point of concurrency of all three of the triangle's splitters. Given a triangle △ABC, let T_A, T_B, T_C be the extouch points in which the A-excircle meets line BC, the B-excircle meets line CA, and the C-excircle meets line AB, respectively. The lines AT_A, BT_B, CT_C concur in the Nagel point N of triangle △ABC.