Nombre cardinalvignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.
Georg CantorGeorg Cantor est un mathématicien allemand, né le à Saint-Pétersbourg (Empire russe) et mort le à Halle (Empire allemand). Il est connu pour être le créateur de la théorie des ensembles. Il établit l'importance de la bijection entre les ensembles, définit les ensembles infinis et les ensembles bien ordonnés. Il prouva également que les nombres réels sont « plus nombreux » que les entiers naturels. En fait, le théorème de Cantor implique l'existence d'une « infinité d'infinis ».
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Axiome du choixvignette|upright=1.5|Pour tout ensemble d'ensembles non vides (les jarres), il existe une fonction qui associe à chacun de ces ensembles (ces jarres) un élément contenu dans cet ensemble (cette jarre). En mathématiques, l'axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles qui Il a été formulé pour la première fois par Ernest Zermelo en 1904 pour la démonstration du théorème de Zermelo. L'axiome du choix peut être accepté ou rejeté, selon la théorie axiomatique des ensembles choisie.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
ÉquipotenceEn mathématiques, l’équipotence est une relation entre ensembles, selon laquelle deux ensembles sont équivalents lorsqu'il existe une bijection entre eux. Cette notion permet de définir la cardinalité, c'est-à-dire le nombre d'éléments d'un ensemble, qu'il soit fini ou infini. La subpotence est une relation plus faible, satisfaite lorsqu'il existe une injection entre deux ensembles. Elle permet de définir une comparaison de taille entre les ensembles, sans présupposer la construction des nombres cardinaux.
Beth (nombre)Dans la théorie des ensembles ZFC (avec axiome du choix), les nombres beth désignent une hiérarchie de nombres cardinaux indexée par les ordinaux, obtenue à partir du dénombrable en prenant le cardinal de l'ensemble des parties pour successeur, et la borne supérieure (ou réunion) pour passer à la limite. La notation de ces nombres utilise la deuxième lettre de l'alphabet hébreu, ou ב. En théorie des ensembles, les nombres cardinaux représentent la taille d'un ensemble.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.