Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
HexacosichoreEn géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
HécatonicosachoreIn geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Polygone de PetrieEn géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions. Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois.
Polyèdre uniformeUn polyèdre uniforme est un polyèdre dont les faces sont des polygones réguliers et qui est isogonal, c'est-à-dire que pour tout couple de sommets, il existe une isométrie qui applique un sommet sur l'autre. Il en découle que tous les sommets sont congruents et que le polyèdre possède un haut degré de symétrie par réflexion et rotation. La notion de polyèdre uniforme est généralisée, pour un nombre de dimensions quelconque, par celle de . Les polyèdres uniformes peuvent être réguliers, quasi réguliers ou semi-réguliers.
Nombre d'orvignette|upright=1.2|La proportion définie par a et b est dite d'« extrême et moyenne raison » lorsque a est à b ce que est à a, soit : lorsque Le rapport a/b est alors égal au nombre d'or (phi). Le nombre d'or (ou section dorée, proportion dorée, ou encore divine proportion) est une proportion, définie initialement en géométrie comme l'unique rapport a/b entre deux longueurs a et b telles que le rapport de la somme a + b des deux longueurs sur la plus grande (a) soit égal à celui de la plus grande (a) sur la plus petite (b), ce qui s'écrit : avec Le découpage d'un segment en deux longueurs vérifiant cette propriété est appelé par Euclide découpage en « extrême et moyenne raison ».
Pavage de Penrosevignette|Un pavage de Penrose|alt= vignette|Roger Penrose, debout sur le pavage de Penrose du foyer de l'institut Mitchell, Texas A&M University|alt= Les pavages de Penrose sont, en géométrie, des pavages du plan découverts par le mathématicien et physicien britannique Roger Penrose dans les années 1970. En 1984, ils ont été utilisés comme un modèle intéressant de la structure des quasi-cristaux.