Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Hécatonicosachore 5/2,3,5En géométrie, l'hécatonicosachore 5/2,3,5 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5/2,3,5}. C'est l'un des 10 polychores de Schläfli-Hess. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. Il a la même que le grand hexacosichore et l'hécatonicosachore icosaédral, ainsi que la même disposition de faces que l'hécatonicosachore 5/2,5,5/2.
Polygone de PetrieEn géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions. Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois.
Petit hécatonicosachore étoiléEn géométrie, le petit hécatonicosachore étoilé ou polydodécaèdre étoilé est un 4-polytope étoilé régulier ayant pour symbole de Schläfli {5/2,5,3}. C'est l'un des 10 polychores de Schläfli-Hess. Il a la même que l'hécatonicosachore 5,5/2,5 et partage également ses 120 sommets avec l'hexacosichore et huit autres polytopes réguliers étoilés. Il peut également être considéré comme la première stellation de l'hécatonicosichore. En ce sens, il pourrait être considéré comme analogue au petit dodécaèdre étoilé tridimensionnel, qui est la première stellation du dodécaèdre.
Hécatonicosachore 5/2,5,5/2En géométrie, l'hécatonicosachore 5/2,5,5/2 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5/2,5,5/2}. C'est l'un des 10 polychores de Schläfli-Hess. Il est l'un des deux polytopes à être son propre dual. Il a la même que le grand hexacosichore et l'hécatonicosachore icosaédral, ainsi que la même disposition de faces que l'hécatonicosachore 5/2,3,5.
Hécatonicosachore 5/2,3,3En géométrie, l'hécatonicosachore 5/2,3,3 est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5/2,3,3}. C'est l'un des 10 polychores de Schläfli-Hess. Il est unique parmi les 10 car il possède 600 sommets, et a la même disposition de sommets que l'hécatonicosachore régulier. C'est l'un des quatre 4-polytopes réguliers étoilés découverts par Ludwig Schläfli. L'hécatonicosachore 5/2,3,3 est la stellation finale de l'hécatonicosachore. En ce sens, il est analogue au grand dodécaèdre étoilé tridimensionnel, qui est la stellation finale du dodécaèdre.
Grand icosaèdreEn géométrie, le grand icosaèdre est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de vingt faces triangulaires équilatérales, cinq triangles se rencontrant à chaque sommet dans une suite pentagrammique. Les douze sommets coïncident avec les localisations des sommets d'un icosaèdre (régulier convexe). Les 30 arêtes sont partagées avec le petit dodécaèdre étoilé. C'est aussi une stellation d'un icosaèdre (régulier convexe), compté par Wenninger comme le modèle [W41] et la et la des 59 stellations par Coxeter.
Grand hécatonicosachore étoilévignette|243x243px| Projection orthogonale En géométrie, le grand hécatonicosachore étoilé, ou hécatonicosachore 5,5/2,5, est un 4-polytope régulier étoilé ayant pour symbole de Schläfli {5,5/2,5}. C'est l'un des 10 polychores de Schläfli-Hess. C'est l'un des deux polytopes qui est son propre dual. Il a la même que l'hexacosichore et l'hécatonicosachore icosaédral, ainsi que la même disposition de faces que l'hécatonicosachore 5,3,5/2.