Elementary classIn model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. A class K of structures of a signature σ is called an elementary class if there is a first-order theory T of signature σ, such that K consists of all models of T, i.e., of all σ-structures that satisfy T. If T can be chosen as a theory consisting of a single first-order sentence, then K is called a basic elementary class.
SatisfaisabilitéEn logique mathématique, la satisfaisabilité ou satisfiabilité et la validité sont des concepts élémentaires de sémantique. Une formule est satisfaisable s'il est possible de trouver une interprétation (modèle), une façon d'interpréter tous les éléments constitutifs de la formule, qui rend la formule vraie. Une formule est universellement valide, ou en raccourci valide si, pour toutes les interprétations, la formule est vraie.
Arithmétique du second ordreEn logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels. Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci.
Structure (logique mathématique)En logique mathématique, plus précisément en théorie des modèles, une structure est un ensemble muni de fonctions et de relations définies sur cet ensemble. Les structures usuelles de l'algèbre sont des structures en ce sens. On utilise également le mot modèle comme synonyme de structure (voir Note sur l'utilisation du mot modèle). La sémantique de la logique du premier ordre se définit dans une structure.
Élimination des quantificateursEn logique mathématique, ou plus précisément en théorie des modèles, l'élimination des quantificateurs est l'action consistant à trouver une formule sans quantificateur équivalente à une formule donnée contenant éventuellement des quantificateurs dans la théorie considérée d'un certain langage.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Skolem normal formIn mathematical logic, a formula of first-order logic is in Skolem normal form if it is in prenex normal form with only universal first-order quantifiers. Every first-order formula may be converted into Skolem normal form while not changing its satisfiability via a process called Skolemization (sometimes spelled Skolemnization). The resulting formula is not necessarily equivalent to the original one, but is equisatisfiable with it: it is satisfiable if and only if the original one is satisfiable.
Categorical theoryIn mathematical logic, a theory is categorical if it has exactly one model (up to isomorphism). Such a theory can be viewed as defining its model, uniquely characterizing the model's structure. In first-order logic, only theories with a finite model can be categorical. Higher-order logic contains categorical theories with an infinite model. For example, the second-order Peano axioms are categorical, having a unique model whose domain is the set of natural numbers In model theory, the notion of a categorical theory is refined with respect to cardinality.
Théorie complèteEn logique mathématique, une théorie complète est une théorie qui est équivalente à un ensemble maximal cohérent de propositions ; ceci signifie qu'elle est cohérente et que toute extension propre ne l'est plus. Pour des théories logiques qui contiennent la logique propositionnelle classique, ceci équivaut à la condition que pour toute proposition φ du langage de la théorie, soit elle contient φ, soit elle contient sa négation ¬φ.
Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.