Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Immersion (mathématiques)En géométrie différentielle, une immersion est une application différentiable d'une variété différentielle dans une autre, dont la différentielle en tout point est injective. Soient V et W deux variétés et f une application différentiable de V dans W. On dit que f est une immersion si pour tout x appartenant à V, le rang de l'application linéaire tangente Tf(x) est égal à la dimension de V. On la différencie : de la submersion (le rang de Tf(x) est égal à la dimension de W) ; du plongement (en plus d'être une immersion, f est un homéomorphisme de V sur f(V)).
Rank (differential topology)In mathematics, the rank of a differentiable map between differentiable manifolds at a point is the rank of the derivative of at . Recall that the derivative of at is a linear map from the tangent space at p to the tangent space at f(p). As a linear map between vector spaces it has a well-defined rank, which is just the dimension of the in Tf(p)N: A differentiable map f : M → N is said to have constant rank if the rank of f is the same for all p in M. Constant rank maps have a number of nice properties and are an important concept in differential topology.
Point critique (mathématiques)En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Local diffeomorphismIn mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below. Let and be differentiable manifolds. A function is a local diffeomorphism, if for each point there exists an open set containing such that is open in and is a diffeomorphism.
Théorème d'inversion localeEn mathématiques, le théorème d'inversion locale est un résultat de calcul différentiel. Il indique que si une fonction f est continûment différentiable en un point, si sa différentielle en ce point est inversible alors, localement, f est inversible et son inverse est différentiable. Ce théorème est équivalent à celui des fonctions implicites, son usage est largement répandu. On le trouve par exemple utilisé, sous une forme ou une autre, dans certaines démonstrations des propriétés du multiplicateur de Lagrange.
Pushforward (differential)In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of at to the tangent space of at , . Hence it can be used to push tangent vectors on forward to tangent vectors on .
Topologie différentielleLa topologie différentielle est une branche des mathématiques qui étudie les fonctions différentiables définies sur des variétés différentielles, ainsi que les applications différentiables entre variétés différentielles. Elle est reliée à la géométrie différentielle, discipline avec laquelle elle se conjugue pour construire une théorie géométrique des variétés différentiables. Variété différentielle Les variétés différentielles constituent le cadre de base de la topologie différentielle.
FibréEn mathématiques, un espace fibré est, intuitivement, un espace topologique qui est localement le produit de deux espaces — appelés la base et la fibre — mais en général pas globalement. Par exemple, le ruban de Möbius est un fibré de base un cercle et de fibre un segment de droite : il ressemble localement au produit d'un cercle par un segment, mais pas globalement comme le cylindre Plus précisément, l'espace total du fibré est muni d'une projection continue sur la base, telle que la de chaque point soit homéomorphe à la fibre.