Théorème de CayleyEn théorie des groupes, le théorème de Cayley est un résultat élémentaire établissant que tout groupe se réalise comme groupe de permutations, c'est-à-dire comme sous-groupe d'un groupe symétrique : Si G est d'ordre n, le groupe S dans lequel il est plongé est d'ordre n!. Le théorème se reformule en disant que tout groupe agit fidèlement sur lui-même. L'action que l'on construit est en fait même simplement transitive. Ce théorème est utilisé en théorie des représentations de groupes.
Problème du mot pour les groupesEn mathématiques, plus précisément dans le domaine de la théorie combinatoire des groupes, le problème du mot pour un groupe de type fini G est le problème algorithmique de décider si deux mots en les générateurs du groupe représentent le même élément. Plus précisément, si X un ensemble fini de générateurs pour G, on considère le langage formel constitué des mots sur X et son ensemble d'inverses formels qui sont envoyés par l'application naturelle sur l'identité du groupe G.
Graphe sommet-transitifEn théorie des graphes, un graphe non-orienté est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième. De manière informelle cette propriété indique que tous les sommets jouent exactement le même rôle à l'intérieur du graphe. Un graphe est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième.
Théorie géométrique des groupesLa théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Présentation d'un groupeEn théorie des groupes, un groupe peut se définir par une présentation, autrement dit, la donnée d'un ensemble de générateurs et d'un ensemble de relations que ceux-ci vérifient. La possibilité d'une telle définition découle de ce que tout groupe est quotient d'un groupe libre. En général, une présentation d'un groupe G se note en écrivant entre crochets une liste de lettres et une liste minimale de mots sur cet alphabet, chaque mot étant censé valoir 1 dans le groupe et aucune relation n'existant entre les lettres, hormis celles-là et leurs conséquences.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Graphe cycleLes graphes cycles, ou n-cycles, forment une famille de graphes. Le graphe cycle est constitué d'un unique cycle élémentaire de longueur n (pour ). C'est un graphe connexe non-orienté d'ordre n à n arêtes. Il est 2-régulier, c'est-à-dire que chacun de ses sommets est de degré 2. Beaucoup de termes sont employés pour désigner le graphe cycle : n-cycle, polygone et n-gone. Le terme de graphe cyclique est parfois employé, mais il pose problème car il s'oppose normalement à graphe acyclique. Nombre chromatique.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Finitely generated groupIn algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated.
Eulerian pathIn graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: Given the graph in the image, is it possible to construct a path (or a cycle; i.