Concepts associés (37)
Finitely generated module
In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Module libre
En algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Module plat
La notion de module plat a été introduite et utilisée, en géométrie algébrique, par Jean-Pierre Serre. Cette notion se trouve également dans un ouvrage contemporain d'Henri Cartan et Samuel Eilenberg en algèbre homologique. Elle généralise les modules projectifs et a fortiori les modules libres. En algèbre commutative et en géométrie algébrique, cette notion a été notamment exploitée par Alexander Grothendieck et son école, et s'est révélée d'une importance considérable.
Resolution (algebra)
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Module injectif
En mathématiques, et plus spécifiquement en algèbre homologique, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : X → Y entre deux A-modules (à gauche) et pour tout morphisme g : X → Q, il existe un morphisme h : Y → Q tel que hf = g, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.
Endomorphism ring
In mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Anneau de Dedekind
thumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
Idempotent (ring theory)
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Homological algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Localisation (mathématiques)
En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.