Explore l'intégration de l'apprentissage automatique dans des modèles à choix discrets, en soulignant l'importance des contraintes théoriques et des approches hybrides de modélisation.
S'insère dans les méthodologies complémentaires de choix discret et d'apprentissage automatique, couvrant les notations, les variables, les modèles, les processus de données, l'extrapolation, l'analyse de ce qu'il faut faire, et plus encore.
Couvre les probabilités, les variables aléatoires, les attentes, les GLM, les tests d'hypothèse et les statistiques bayésiennes avec des exemples pratiques.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Explore la généralisation, la sélection des modèles et la validation dans l'apprentissage automatique, en soulignant l'importance de l'évaluation impartiale des modèles.