Noyau de PoissonEn théorie du potentiel, le noyau de Poisson est un opérateur intégral utilisé pour résoudre le problème de Dirichlet en dimension 2. Plus précisément, il donne des solutions à l'équation de Laplace en deux dimensions vérifiant les conditions aux limites de Dirichlet sur le disque unité. Cet opérateur peut se concevoir comme la dérivée de la fonction de Green solution de l'équation de Laplace. Le noyau de Poisson est important en analyse complexe car il est à l'origine de l'intégrale de Poisson qui donne une fonction harmonique définie sur le disque unité prolongement d'une fonction définie sur le cercle unité.
Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Degenerate distributionIn mathematics, a degenerate distribution is, according to some, a probability distribution in a space with support only on a manifold of lower dimension, and according to others a distribution with support only at a single point. By the latter definition, it is a deterministic distribution and takes only a single value. Examples include a two-headed coin and rolling a die whose sides all show the same number. This distribution satisfies the definition of "random variable" even though it does not appear random in the everyday sense of the word; hence it is considered degenerate.
Mesure de DiracIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
Suite régularisanteEn mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités. Une suite de fonctions tests ( C à support compact) sur est dite régularisante si, pour tout indice : le support de est inclus dans une boule avec : les fonctions sont donc de plus en plus resserrées autour de l'origine.
Espace de HardyLes espaces de Hardy, dans le domaine mathématique de l'analyse fonctionnelle, sont des espaces de fonctions analytiques sur le disque unité D du plan complexe. Soit f une fonction holomorphe sur D, on sait que f admet un développement en série de Taylor en 0 sur le disque unité : On dit alors que f est dans l'espace de Hardy H(D) si la suite appartient à l. Autrement dit, on a : On définit alors la norme de f par : La fonction appartient à H(D), par convergence de la série (série de Riemann convergente).
Laplacian of the indicatorIn mathematics, the Laplacian of the indicator of the domain D is a generalisation of the derivative of the Dirac delta function to higher dimensions, and is non-zero only on the surface of D. It can be viewed as the surface delta prime function. It is analogous to the second derivative of the Heaviside step function in one dimension. It can be obtained by letting the Laplace operator work on the indicator function of some domain D.
Formule sommatoire de PoissonLa formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Noyau de Dirichletthumb|upright=2|Tracé des premiers noyaux de Dirichlet. En mathématiques, et plus précisément en analyse, le n-ième noyau de Dirichlet — nommé ainsi en l'honneur du mathématicien allemand Johann Dirichlet — est le polynôme trigonométrique défini par : C'est donc une fonction 2π-périodique de classe . Elle vérifie de plus : si x n'est pas un multiple entier de 2π, alors ; si x est un multiple entier de 2π, alors . Le noyau de Dirichlet permet notamment d'améliorer la convergence des séries de Fourier.
Laurent Schwartz (mathématicien)Laurent Moïse Schwartz est un mathématicien français, né le à Paris où il est mort le . Il est le premier Français à obtenir la médaille Fields, en 1950 pour ses travaux sur la théorie des distributions. Professeur emblématique à l'École polytechnique de 1959 à 1980, membre de l'Académie des sciences et intellectuel engagé, il s'est distingué par ses nombreux combats politiques. Laurent Schwartz est issu d’une famille juive d’origine alsacienne, imprégnée de culture scientifique.