Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Mouvement brownienvignette|Simulation de mouvement brownien pour cinq particules (jaunes) qui entrent en collision avec un lot de 800 particules. Les cinq chemins bleus représentent leur trajet aléatoire dans le fluide. Le mouvement brownien, ou processus de Wiener, est une description mathématique du mouvement aléatoire d'une « grosse » particule immergée dans un liquide et qui n'est soumise à aucune autre interaction que des chocs avec les « petites » molécules du fluide environnant.
Dualité onde-corpusculeEn physique, la dualité onde-corpuscule aussi appelée dualité onde-particule est un principe selon lequel tous les objets physiques peuvent présenter parfois des propriétés d'ondes et parfois des propriétés de corpuscules et de particules. La manifestation de ces propriétés ne dépend pas seulement de l'objet étudié isolément, mais aussi de tout l'appareillage de mesure utilisé. Ce concept fait partie des fondements de la mécanique quantique.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).