Concepts associés (16)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Logique paracohérente
En logique mathématique, une logique paracohérente (aussi appelé logique paraconsistante) est un système logique qui tolère les contradictions, contrairement au système de la logique classique. Les logiques tolérantes aux incohérences sont étudiées depuis au moins 1910, avec des esquisses remontant sans doute au temps d'Aristote. Le terme paracohérent - (à côté du cohérent, paraconsistent en anglais) - n'a été employé qu'après 1976 par le philosophe péruvien .
Transposition (logique)
En logique des propositions, une transposition est une règle de remplacement valide qui permet d'échanger l'antécédent avec le conséquent d'une implication matérielle dans une preuve logique s'il sont tous les deux négatifs. C'est l'inférence de la vérité de « A implique B » à la vérité de « non-B implique non-A », et inversement. Il est très étroitement liée à la règle d'inférence modus tollens. La règle est la suivante : où « » est un symbole métalogique représentant "peut être remplacé dans une démonstration avec.
Système à la Hilbert
En logique, les systèmes à la Hilbert servent à définir les déductions formelles en suivant un modèle proposé par David Hilbert au début du : un grand nombre daxiomes logiques exprimant les principales propriétés de la logique que l'on combine au moyen de quelques règles, notamment la règle de modus ponens, pour dériver de nouveaux théorèmes. Les systèmes à la Hilbert héritent du système défini par Gottlob Frege et constituent les premiers systèmes déductifs, avant l'apparition de la déduction naturelle ou du calcul des séquents, appelés parfois par opposition systèmes à la Gentzen.
Équivalence logique
En logique classique, deux propositions P et Q sont dites logiquement équivalentes ou simplement équivalentes quand il est possible de déduire Q à partir de P et de déduire P à partir de Q. En calcul des propositions, cela revient à dire que P et Q ont même valeur de vérité : P et Q sont soit toutes les deux vraies, soit toutes les deux fausses. L'équivalence logique s'exprime souvent sous la forme si et seulement si, dans des cadres comme l'enseignement ou la métamathématique pour parler des propriétés de la logique elle-même, et non du connecteur logique qui lie deux propositions.
Algèbre de Heyting
En mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.
Logique classique
La logique classique est la première formalisation du langage et du raisonnement mathématique développée à partir de la fin du en logique mathématique. Appelée simplement logique à ses débuts, c'est l'apparition d'autres systèmes logiques formels, notamment de la logique intuitionniste, qui a suscité l'adjonction de l'adjectif classique au terme logique. À cette époque, le terme de logique classique fait référence à la logique aristotélicienne.
Logique non classique
En logique mathématique, les logiques non classiques sont des logiques formelles qui diffèrent de façon significative de la logique classique. L'adjectif « classique » a un sens normatif autrement dit , il qualifie ce qui est habituel. Les logiques classiques adoptent effectivement des principes usuels comme le tiers exclu, le principe d'explosion, le raisonnement par l'absurde, l'usage de tables de vérité, etc. Dans les logiques non classiques, on étudie des variations, par exemple en supprimant des principes, ou en ayant plus de deux valeurs de vérité.
Double-negation translation
In proof theory, a discipline within mathematical logic, double-negation translation, sometimes called negative translation, is a general approach for embedding classical logic into intuitionistic logic. Typically it is done by translating formulas to formulas which are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic.
Logique minimale
En logique mathématique, la logique minimale est une logique qui diffère de la logique classique par le fait qu'elle n'inclut ni le tiers-exclu ni le principe d'explosion. Elle a été créée par Ingebrigt Johansson. Les trois types de logiques mathématiques (logique minimale, logique intuitionniste et logique classique) sont différentes de par leur façon de traiter la négation et la contradiction dans le calcul des propositions ou le calcul des prédicats.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.