Quadrature (mathématiques)En mathématiques, la quadrature d'une surface est la recherche d'un carré ayant la même aire que la surface en question. Si dans le langage courant le terme de quadrature revêt le sens d'opération impossible, cela provient du fait que la quadrature la plus célèbre (la quadrature du cercle) se révèle impossible à réaliser à la règle et au compas. Mais, en mathématiques, le terme de quadrature va prendre très rapidement le sens de calcul d'aire.
Multiplicité (mathématiques)En mathématiques, on définit pour certaines propriétés la multiplicité d'une valeur ayant cette propriété. Il s'agit en général d'un nombre naturel qui indique « combien de fois » la valeur possède la propriété. Cela est dépourvu de sens en général (on possède une propriété ou on ne la possède pas), mais une interprétation naturelle existe dans certains cas. En général une propriété pour laquelle des multiplicités sont définies détermine un multiensemble de valeurs plutôt qu'un simple ensemble.
Linear recurrence with constant coefficientsIn mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1.
Fonction algébriqueEn mathématiques, une fonction algébrique d'indéterminées est une fonction F qui satisfait l'équation non triviale où P est un polynôme à n + 1 variables sur un corps commutatif K. En cela, F est une fonction implicite qui résout une équation algébrique. Un exemple simple serait La classe des fonctions algébriques contient toutes les fonctions rationnelles, mais est plus grande. Du point de vue de l'algèbre générale, il s'agit, pour tout ensemble fixé d'indéterminées, de la clôture algébrique du corps des fonctions rationnelles.
Séparation des variablesEn mathématiques, la séparation des variables constitue l'une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l'algèbre permet de réécrire l'équation de sorte que chacune des deux variables apparaisse dans un membre distinct de l'équation. Supposons qu'une équation différentielle puisse être écrite de la forme suivante et pour tout x : que l'on peut écrire plus simplement en identifiant : Tant que h(y) ≠ 0, on peut réécrire les termes de l'équation pour obtenir : séparant donc les variables x et y.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Facteur intégrantEn mathématiques, un facteur intégrant est une fonction qu'on choisit afin de rendre plus facile la solution d'une équation comportant des dérivées. Les facteurs intégrants sont d'usage commun pour la solution d'équations différentielles, en particulier des équations différentielles ordinaires (EDO), ainsi qu'en calcul différentiel sur plusieurs variables, dans lequel cas la multiplication par un facteur intégrant permet d'obtenir une différentielle exacte à partir d'une différentielle inexacte.