Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.
Système de SteinerEn mathématiques, et plus particulièrement en combinatoire, un système de Steiner (nommé ainsi d'après Jakob Steiner) est un type de design combinatoire. Plus précisément, un système de Steiner de paramètres t, k, n, noté S(t,k,n), est constitué d'un ensemble S à n éléments, et d'un ensemble de sous-ensembles de S à k éléments (appelés blocs), ayant la propriété que tout sous-ensemble de S à t éléments est contenu dans un bloc et un seul (cette définition moderne généralise celle de Steiner, demandant en plus que k = t + 1).
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Application semi-linéaireEn algèbre linéaire, en particulier en géométrie projective, une application semi-linéaire entre les espaces vectoriels V et W sur un corps K est une fonction qui est une application linéaire « à torsion près », donc semi -linéaire, où « torsion » signifie « automorphisme de corps de K ». Explicitement, c'est une application telle que : est additive par rapport à l'addition vectorielle : pour tous et de ; il existe un automorphisme de corps θ de K tel que , où est l'image du scalaire par l'automorphisme .
Covering groups of the alternating and symmetric groupsIn the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4.
Congruence subgroupIn mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
CollineationIn projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the of collinear points are themselves collinear. A collineation is thus an isomorphism between projective spaces, or an automorphism from a projective space to itself. Some authors restrict the definition of collineation to the case where it is an automorphism. The set of all collineations of a space to itself form a group, called the collineation group.
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
Projective unitary groupIn mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the holomorphic isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex n×n unitary matrices, and elements of the center are diagonal matrices equal to eiθ multiplied by the identity matrix.
Superperfect groupIn mathematics, in the realm of group theory, a group is said to be superperfect when its first two homology groups are trivial: H1(G, Z) = H2(G, Z) = 0. This is stronger than a perfect group, which is one whose first homology group vanishes. In more classical terms, a superperfect group is one whose abelianization and Schur multiplier both vanish; abelianization equals the first homology, while the Schur multiplier equals the second homology.