Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Partition d'un ensemblevignette|Les 52 partitions d'un ensemble à 5 éléments. Les points noirs représentent les éléments de l'ensemble. Une région colorée correspond à un bloc de la partition qui regroupe plusieurs points noirs. Un point noir isolé signifie que cet élément appartient à un bloc qui est un singleton. En mathématiques, une partition d'un ensemble X est un ensemble de parties non vides de X deux à deux disjointes et dont l'union est X. Soit un ensemble X.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Intervalle (mathématiques)En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble ordonné de points compris entre deux bornes. Cette notion première s'est ensuite développée jusqu'à aboutir à la notion topologique de boule d'un espace métrique. Initialement, on appelle intervalle réel un ensemble de nombres délimité par deux nombres réels constituant une borne inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.
Ensemble infiniEn mathématiques, plus précisément en théorie des ensembles, un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble à l'aide d'un ensemble borné d'entiers. Un ensemble en bijection avec un ensemble infini est donc infini. Tout ensemble contenant un ensemble dénombrable est infini. Dans la théorie de Zermelo (Z), l'axiome de l'infini permet de construire l'ensemble N des entiers naturels, qui est alors un ensemble infini.
Famille (mathématiques)En mathématiques, la notion de famille est une généralisation de celle de suite, suite finie ou suite indexée par tous les entiers naturels. Ainsi on pourra parler, en algèbre linéaire, de la famille de vecteurs qui est une famille finie, ou de la famille dénombrable (un)n ∈ N. Une famille est toujours indexée, même si elle l'est parfois implicitement, par exemple dans les locutions « famille libre » ou « famille génératrice ». Une famille (x) d'éléments x d'un ensemble E, indexée par un ensemble I, lindex, est une application définie sur I à valeurs dans E.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
MultiensembleUn multiensemble (parfois appelé sac, de l'anglais bag utilisé comme synonyme de multiset) est une sorte d'ensemble dans lequel chaque élément peut apparaître plusieurs fois. C'est une généralisation de la notion d'ensemble : un ensemble ordinaire est un multiensemble dans lequel chaque élément apparaît au plus une seule fois ; ce qu'impose, pour les ensembles usuels, l'axiome d'extensionnalité. On nomme multiplicité d'un élément donné le nombre de fois où il apparaît.