Concepts associés (87)
Groupe (mathématiques)
vignette|Les manipulations possibles du Rubik's Cube forment un groupe. En mathématiques, un groupe est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni d'une loi de composition interne associative admettant un élément neutre et, pour chaque élément de l'ensemble, un élément symétrique. La structure de groupe est commune à de nombreux ensembles de nombres — par exemple les nombres entiers relatifs, munis de la loi d'addition.
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Sous-groupe normal
En théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Groupe profini
En théorie des groupes, un groupe profini est un groupe topologique obtenu comme limite projective de groupes finis discrets. La notion de groupe profini est particulièrement utile en théorie de Galois, pour pouvoir travailler avec des extensions infinies. Comme plus généralement en théorie des catégories, cette limite projective est uniquement définie à unique isomorphisme près. Elle peut être interprétée comme objet final d'une bonne catégorie.
Rubik's Cube
Le Rubik’s Cube (ou Cube de Rubik) est un casse-tête inventé par Ernő Rubik en 1974, et qui s’est rapidement répandu sur toute la planète au cours des . Au Canada francophone, il est nommé Cube Rubik (sans le « de ») et l'appellation Rubik's Cube est considérée comme exclusivement anglophone. Il s'agit d'un casse-tête géométrique à trois dimensions composé extérieurement de 26 éléments qui, à première vue, semblent être des cubes pouvant se déplacer sur toutes les faces et paraissant libres de toute attache sans tomber pour autant.
Groupe de symétrie
Le groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Théorème de Lagrange sur les groupes
vignette|Si G est le groupe des entiers modulo 8, alors {0, 4} forme un sous-groupe H. Sur l'exemple, {0, 4} contient 2 éléments et 2 divise 8. En mathématiques, le théorème de Lagrange sur les groupes énonce un résultat élémentaire fournissant des informations combinatoires sur les groupes finis. Le théorème doit son nom au mathématicien Joseph-Louis Lagrange. Il est parfois nommé théorème d'Euler-Lagrange car il généralise un théorème d'Euler sur les entiers.
Problème du mot pour les groupes
En mathématiques, plus précisément dans le domaine de la théorie combinatoire des groupes, le problème du mot pour un groupe de type fini G est le problème algorithmique de décider si deux mots en les générateurs du groupe représentent le même élément. Plus précisément, si X un ensemble fini de générateurs pour G, on considère le langage formel constitué des mots sur X et son ensemble d'inverses formels qui sont envoyés par l'application naturelle sur l'identité du groupe G.
Groupe fini
vignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Groupe symétrique
En mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini. Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique). Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.