Concepts associés (14)
Potentiel vecteur du champ magnétique
Le potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm.
Gauge fixing
In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Scalar potential
In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value (scalar) that depends only on its location. A familiar example is potential energy due to gravity.
Théorème de Helmholtz-Hodge
En mathématiques et en physique, dans le domaine de l’analyse vectorielle, le théorème de Helmholtz-Hodge, également appelé théorème fondamental du calcul vectoriel, assure qu'un champ vectoriel se décompose en une composante « longitudinale » (irrotationnelle) et une composante « transverse » (solénoïdale), soit la somme du gradient d’un champ scalaire et du rotationnel d’un champ vectoriel. Ce résultat possède des applications importantes en électromagnétisme et en mécanique des fluides ; il est également exploité en sismologie.
Quadrivecteur potentiel
En physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
Champ solénoïdal
thumb|Champ solénoïdal En analyse vectorielle, un champ solénoïdal ou champ incompressible désigne un champ vectoriel dont la divergence est nulle, ou de manière équivalente dont le flot préserve le volume euclidien. L’incompressibilité fait référence à la conservation du volume.
Champ conservatif
Un champ de vecteurs est dit à circulation conservative (ou irrotationnel) si sa circulation sur toute courbe fermée est nulle (son rotationnel est alors nul, et réciproquement). Sous certaines conditions relatives au domaine de définition et à la régularité du champ, on peut dériver le potentiel de ce champ, fonction scalaire qui en permet une représentation alternative. De même, un champ de vecteurs est dit à flux conservatif si son flux sur toute surface fermée est nul (sa divergence est alors nulle, et réciproquement).
Théorie de jauge
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Densité de courant
La densité de courant, ou densité volumique de courant, est un vecteur qui décrit le courant électrique à l'échelle locale, en tout point d'un système physique. Dans le Système international d'unités, son module s'exprime en ampères par mètre carré ( ou ). À l'échelle du système tout entier il s'agit d'un champ de vecteurs, puisque le vecteur densité de courant est défini en tout point.
Quadrivecteur
En physique, un quadrivecteur est un vecteur à quatre dimensions utilisé pour représenter un événement dans l'espace-temps. Dans la théorie de la relativité restreinte, un quadrivecteur est un vecteur de l'espace de Minkowski, où un changement de référentiel se fait par des transformations de Lorentz (par covariance des coordonnées). En relativité restreinte, un quadrivecteur (ou 4-vecteur) est un vecteur appartenant à l'espace vectoriel associé à l'espace affine qu'est l'espace-temps.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.