Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
Fonction C∞ à support compactEn mathématiques, une fonction C à support compact (également appelée fonction test) est une fonction infiniment dérivable dont le support est compact. Ces fonctions sont au cœur de la théorie des distributions, puisque ces dernières sont construites comme éléments du dual topologique de l'espace des fonctions tests. Les fonctions C à support compact sont également utilisées pour construire des suites régularisantes et des partitions de l'unité de classe C.
Sinus cardinalEn mathématiques, la fonction sinus cardinal est une fonction définie à partir de la fonction trigonométrique sinus apparaissant fréquemment dans des problèmes de physique ondulatoire. La fonction sinus cardinal est définie par : où sin désigne la fonction sinus. Il existe une autre définition couramment utilisée : Quand une confusion pourra être possible, on notera par la suite sinc (resp. sinc) la première (et respectivement la seconde) version de la fonction. La seconde est parfois nommée sinus cardinal normalisé.
Espace de MontelEn topologie des espaces vectoriels, on appelle espace de Montel un espace vectoriel topologique localement convexe séparé, tonnelé et dont tout fermé borné est compact. Le nom provient du mathématicien Paul Montel. Tout espace de Montel est réflexif et quasi complet. Son dual fort est un espace de Montel. Le quotient d'un espace de Fréchet-Montel par un sous-espace fermé peut n'être pas réflexif, et a fortiori ne pas être un espace de Montel (en revanche, le quotient d'un espace de Fréchet-Schwartz par un sous-espace fermé est un espace de Fréchet-Montel).
Mackey spaceIn mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey. Examples of locally convex spaces that are Mackey spaces include: All barrelled spaces and more generally all infrabarreled spaces Hence in particular all bornological spaces and reflexive spaces All metrizable spaces.
Fonction gaussiennevignette|Fonction gaussienne pour μ = 0, σ = 1 ; courbe centrée en zéro. Une fonction gaussienne est une fonction en exponentielle de l'opposé du carré de l'abscisse (une fonction en exp(-x)). Elle a une forme caractéristique de courbe en cloche. L'exemple le plus connu est la densité de probabilité de la loi normale où μ est l'espérance mathématique et σ est l'écart type. Les fonctions gaussiennes sont analytiques, de limite nulle en l'infini. La largeur à mi-hauteur H vaut la demi-largeur à mi-hauteur vaut donc environ 1,177·σ.
Espace nucléaireEn mathématiques, et plus précisément en analyse, un espace nucléaire est un espace vectoriel topologique possédant certaines propriétés analogues à celles des espaces de dimension finie. Leur topologie peut être définie par une famille de semi-normes dont la taille des boules unités décroit rapidement. Les espaces vectoriels dont les éléments sont « lisses » en un certain sens sont souvent des espaces nucléaires ; un exemple typique est celui des fonctions régulières sur une variété compacte.
Formule sommatoire de PoissonLa formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Injective tensor productIn mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the . Injective tensor products have applications outside of nuclear spaces.