Division par zéroLa division par zéro consiste à chercher le résultat qu'on obtiendrait en prenant zéro comme diviseur. Ainsi, une division par zéro s'écrirait x/0, où x serait le dividende (ou numérateur). Dans les définitions usuelles de la multiplication, cette opération n'a pas de sens : elle contredit notamment la définition de la multiplication en tant que seconde loi de composition d'un corps, car zéro (l'élément neutre de l'addition) est un élément absorbant pour la multiplication. La division par zéro donne l'infini.
Équation cubiquethumb|right|Une équation cubique admet au plus trois solutions réelles. En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax + bx + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes. Les équations cubiques étaient connues des anciens Babyloniens, Grecs, Chinois, Indiens et Égyptiens. On a trouvé des tablettes babyloniennes () avec, en écriture cunéiforme, des tables de calcul de cubes et de racines cubiques.
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Équation polynomialeEn mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Fonction impliciteEn mathématiques, une équation entre différentes variables où une variable n'est pas explicitée en fonction des autres est appelée une équation implicite. Une fonction implicite est une fonction qui se déduit implicitement d'une telle équation. Plus précisément si f est une fonction de E × F dans G, où E, F et G sont des espaces vectoriels normés ou plus simplement des intervalles de R, l'équation f(x,y) = 0 définit une fonction implicite si l'on peut exprimer une des variables en fonction de l'autre pour tous les couples (x,y) vérifiant l'équation.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
QuotientEn mathématiques, un quotient est le résultat d'une division. Le quotient existe ou pas selon l'ensemble de nombres considéré. Dans les entiers naturels, le quotient de par n'existe que si est un multiple de . On parle alors de quotient euclidien, puisqu'il résulte d'une division euclidienne. Le mot quotient s'emploie parfois pour fraction.