Discrete-time Fourier transformIn mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Filtre (audio)Dans le traitement du signal, un filtre est un appareil ou une fonction servant à retirer ou bien à accentuer ou réduire certaines parties du spectre sonore représentées dans un signal. Les filtres sont essentiels dans plusieurs fonctions des appareils électroniques (voir Filtre (électronique)). Nous ne traiterons ici que des filtres accessibles par des commandes dans les tranches des consoles de mixage et les égaliseurs qui permettent d'ajuster la tonalité des sons.
Filtre à réponse impulsionnelle infinieUn filtre à réponse impulsionnelle infinie ou filtre RII (en anglais infinite impulse response filter ou IIR filter) est un type de filtre électronique caractérisé par une réponse fondée sur les valeurs du signal d'entrée ainsi que les valeurs antérieures de cette même réponse. Il est nommé ainsi parce que dans la majorité des cas, la réponse impulsionnelle de ce type de filtre est de durée théoriquement infinie. Il est aussi désigné par l'appellation de filtre récursif. Ce filtre est l'un des deux types de filtre numérique linéaire.
Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Réponse impulsionnellevignette|300px|right|Réponses impulsionnelles d'un système audio simple (de haut en bas) : impulsion originale à l'entrée, réponse après amplification des hautes fréquences et réponse après amplification des basses fréquences. En traitement du signal, la réponse impulsionnelle d'un processus est le signal de sortie qui est obtenu lorsque l'entrée reçoit une impulsion, c'est-à-dire une variation soudaine et brève du signal.
Filtre (électronique)En électronique, un filtre est un circuit linéaire qui transmet une grandeur électrique (courant ou tension) selon sa répartition en fréquences. Le filtre transforme l'histoire de cette grandeur d'entrée (c'est-à-dire ses valeurs successives depuis un certain temps) en une grandeur de sortie. Pour raisonner sur les filtres électroniques, on les considère comme des quadripôles dont les grandeurs électriques d'entrée et de sortie seraient un signal, même quand celles-ci ne servent pas à transmettre de l'information (comme dans le cas des filtres d'alimentation).
FenêtrageEn traitement du signal, le fenêtrage est utilisé dès que l'on s'intéresse à un signal de longueur volontairement limitée. En effet, un signal réel ne peut qu'avoir une durée limitée dans le temps ; de plus, un calcul ne peut se faire que sur un nombre fini de points. Pour observer un signal sur une durée finie, on le multiplie par une fonction fenêtre d'observation (également appelée fenêtre de pondération ou d'apodisation).
Moyenne mobileLa moyenne mobile, ou moyenne glissante, est un type de moyenne statistique utilisée pour analyser des séries ordonnées de données, le plus souvent des séries temporelles, en supprimant les fluctuations transitoires de façon à en souligner les tendances à plus long terme. Cette moyenne est dite mobile parce qu'elle est recalculée de façon continue, en utilisant à chaque calcul un sous-ensemble d'éléments dans lequel un nouvel élément remplace le plus ancien ou s'ajoute au sous-ensemble.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.