Axiome de fondationL'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation.
Ensemble transitifEn mathématiques, plus précisément en théorie des ensembles, un ensemble transitif est un ensemble dont tous les éléments sont aussi des parties de l'ensemble. Un ensemble X est dit transitif si tout élément y d’un élément x de X est lui-même élément de X c'est-à-dire si tout élément x de X est un sous-ensemble de X (en notant « ⊂ » l'inclusion au sens large) : ∀ x (x ∈ X ⇒ x ⊂ X) ce qui revient à (en notant ∪X l'union des éléments de X) : ∪X ⊂ X.
Axiome de l'infiniEn mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Théorie des ensembles de ZermeloLa théorie des ensembles de Zermelo, est la théorie des ensembles introduite en 1908 par Ernst Zermelo dans un article fondateur de l'axiomatisation de la théorie des ensembles moderne, mais aussi une présentation moderne de celle-ci, où les axiomes sont repris dans le langage de la logique du premier ordre, et où l'axiome de l'infini est modifié pour permettre la construction des entiers naturels de von Neumann. Cette section présente les axiomes originaux de l'article de Zermelo paru en 1908, numérotés comme dans cet article.
Hereditarily finite setIn mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. A recursive definition of well-founded hereditarily finite sets is as follows: Base case: The empty set is a hereditarily finite set. Recursion rule: If a1,...,ak are hereditarily finite, then so is {a1,...,ak}.
Cardinal inaccessibleEn mathématiques, et plus précisément en théorie des ensembles, un cardinal inaccessible est un cardinal ne pouvant être construit à partir de cardinaux plus petits à l'aide des axiomes de ZFC ; cette propriété fait qu'un cardinal inaccessible est un grand cardinal. Un cardinal infini א est : soit א0 si α = 0 ; soit limite (au sens faible) si α est un ordinal limite ; soit successeur de א si α = β + 1.
Théorie des ensembles non bien fondésLa théorie des ensembles non bien fondés est une variante de la théorie axiomatique des ensembles qui permet aux ensembles de s'appartenir les uns aux autres sans limite. Autrement dit, c'est une théorie des ensembles qui ne satisfait pas l'axiome de fondation. Plus précisément, dans la théorie des ensembles non bien fondés, l'axiome de fondation de ZFC est remplacé par un axiome impliquant sa négation.
Grand cardinalEn mathématiques, et plus précisément en théorie des ensembles, un grand cardinal est un nombre cardinal transfini satisfaisant une propriété qui le distingue des ensembles constructibles avec l'axiomatique usuelle (ZFC) tels que א, א, etc., et le rend nécessairement plus grand que tous ceux-ci. L'existence d'un grand cardinal est donc soumise à l'acceptation de nouveaux axiomes. Un axiome de grand cardinal est un axiome affirmant qu'il existe un cardinal (ou parfois une famille de cardinaux) ayant une propriété de grand cardinal donnée.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Univers (logique)En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.