Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Théorème de Pascaldroite|200x200px En géométrie projective, le théorème de Pascal est un théorème concernant un hexagone inscrit dans une conique . Étant donné un hexagone d'un plan projectif sur un corps commutatif quelconque, il y a équivalence entre les deux propositions suivantes : Les "côtés" de l'hexagone sont les droites joignant deux points consécutifs de l'hexagone. Si deux côtés opposés sont confondus, leur intersection est une droite.
Droite à l'infiniDans le plan projectif, il est possible de définir un plan affine en choisissant une droite projective quelconque, que l'on appelle alors droite à l'infini associée à ce plan affine. Deux droites affines strictement parallèles correspondent à deux droites projectives qui s'intersectent en un point situé sur la droite à l'infini, dit point à l'infini. Réciproquement, il est toujours possible de compléter un plan affine par une droite à l'infini de façon à obtenir un plan projectif, dit complété projectif de ce plan affine.
QuadriqueEn mathématiques, une quadrique, ou surface quadratique, est une surface satisfaisant une équation cartésienne polynomiale de degré 2 à trois variables (notées généralement x, y et z) de la forme Ces surfaces sont classifiées par une équation réduite dans un repère orthonormé adapté en géométrie euclidienne, et en neuf classes non dégénérées à transformation linéaire près en géométrie affine. On peut également les étudier dans le cadre de la géométrie projective, qui simplifie et unifie complètement les résultats.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Ellipse (mathématiques)Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
Hyperbole (mathématiques)thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
Parabolevignette|Une parabole représentée par la fonction f(x)=x. La parabole est une courbe plane, symétrique par rapport à un axe, ayant approximativement la forme d'un U dont les branches s'écarteraient indéfiniment. Cette courbe intervient dans les problèmes les plus élémentaires de mécanique ou de mathématiques. En effet la trajectoire d'un projectile qui n'est soumis qu'à la pesanteur est une parabole, ou encore, en mathématiques, la représentation graphique des polynômes de degré 2 est une parabole.