Diagramme de VoronoïEn mathématiques, un diagramme de Voronoï est un pavage (découpage) du plan en cellules (régions adjacentes) à partir d'un ensemble discret de points appelés « germes ». Chaque cellule enferme un seul germe, et forme l'ensemble des points du plan plus proches de ce germe que d'aucun autre. La cellule représente en quelque sorte la « zone d'influence » du germe. Le diagramme doit son nom au mathématicien russe Gueorgui Voronoï (1868-1908). Le découpage est aussi appelé décomposition de Voronoï, partition de Voronoï ou tessellation de Dirichlet.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Unit cellIn geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector, for example) does not necessarily have unit size, or even a particular size at all. Rather, the primitive cell is the closest analogy to a unit vector, since it has a determined size for a given lattice and is the basic building block from which larger cells are constructed.
Groupe de papier peintUn groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Géométrie des nombresthumb|right|L'observation de base de la géométrie des nombres : un disque centré en O contient des points du quadrillage (en vert) autres que O seulement s'il est assez grand (c'est le cas du disque violet C', mais pas du disque rose C) En mathématiques, la géométrie des nombres est une discipline qui interprète des problèmes arithmétiques en termes de réseaux discrets et les résout en utilisant des propriétés géométriques. Elle a été fondée à la fin du par Hermann Minkowski.
Groupe ponctuel de symétrieEn géométrie, un groupe ponctuel de symétrie est un sous-groupe d'un groupe orthogonal : il est composé d'isométries, c'est-à-dire d'applications linéaires laissant invariants les distances et les angles. Le groupe ponctuel de symétrie d'une molécule est constitué des isométries qui laissent la molécule, en tant que forme géométrique, invariante. thumb|Figure 1 : exemple de rotation En cristallographie, un groupe ponctuel contient les opérations de symétrie qui laissent invariants la morphologie d’un cristal et ses propriétés physiques (la symétrie de la structure atomique d’un cristal est décrite par les groupes d’espace).
Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
Fonction elliptiquevignette|Fonctions elliptiques lemniscates et ellipse. En mathématiques, et plus particulièrement en analyse complexe, une fonction elliptique est, grossièrement parlant, une fonction définie sur le plan complexe qui est doublement périodique (périodique dans deux directions). Elle peut être vue comme analogue à une fonction trigonométrique (qui a une seule période).
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.