Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Fonction digammaEn mathématiques, la fonction digamma ou fonction psi est définie comme la dérivée logarithmique de la fonction gamma : À la suite des travaux d'Euler sur la fonction gamma, James Stirling a introduit la fonction digamma en 1730, en la notant par Ϝ, la lettre grecque digamma (majuscule). Elle fut par la suite étudiée par Legendre, Poisson et Gauss vers 1810 ; la convergence de la série de Stirling pour cette fonction a été démontrée par Stern en 1847. Elle est désormais le plus souvent notée par la lettre ψ (psi minuscule).
Polynôme de LaguerreEn mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre, sont les solutions normalisées de l'équation de Laguerre : qui est une équation différentielle linéaire homogène d'ordre 2 et se réécrit sous la forme de Sturm-Liouville : Cette équation a des solutions non singulières seulement si n est un entier positif. Les solutions L forment une suite de polynômes orthogonaux dans L (R, edx), et la normalisation se fait en leur imposant d'être de norme 1, donc de former une famille orthonormale.
Fonction d'AiryLa fonction d'Airy Ai est une des fonctions spéciales en mathématiques, c'est-à-dire une des fonctions remarquables apparaissant fréquemment dans les calculs. Elle porte le nom de l'astronome britannique George Biddell Airy, qui l'introduisit pour ses calculs d'optique, notamment lors de l'étude de l'arc-en-ciel. La fonction d'Airy Ai et la fonction Bi, qu'on appelle fonction d'Airy de seconde espèce, sont des solutions de l'équation différentielle linéaire d'ordre deux connue sous le nom d'équation d'Airy.
Fonction hypergéométrique confluentevignette|Fonction hypergéométrique confluente. La fonction hypergéométrique confluente (ou fonction de Kummer) est : où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf.