J-invariantLe j-invariant, parfois appelé fonction j, est une fonction introduite par Felix Klein pour l'étude des courbes elliptiques, qui a depuis trouvé des applications au-delà de la seule géométrie algébrique, par exemple dans l'étude des fonctions modulaires, de la théorie des corps de classes et du monstrous moonshine. On travaille dans le . Soient quatre points distincts , leur birapport est : Cette quantité est invariante par homographies du plan, mais dépend de l'ordre des quatre nombres considérés.
Opérateur de HeckeEn mathématiques, en particulier dans la théorie des formes modulaires, un opérateur de Hecke, étudié par Erich Hecke, est un certain type d'opérateur de « moyennage » qui joue un rôle important dans la structure des espaces vectoriels de formes modulaires et de représentations automorphes plus générales. Mordell (1917) a utilisé les opérateurs de Hecke sur les formes modulaires dans un article sur les formes paraboliques spéciales de Ramanujan, bien avant la théorie générale développée par Hecke (1937a, 1937b).
Conjecture de RamanujanEn mathématiques, la conjecture de Ramanujan, due à Srinivasa Ramanujan (et démontrée par Pierre Deligne en 1973), prédit certaines propriétés arithmétiques ainsi que le comportement asymptotique de la fonction tau qu'il a définie. La conjecture de Ramanujan généralisée, ou conjecture de Ramanujan-Petersson, introduite par Hans Petersson en 1930, en est une généralisation à d'autres formes modulaires ou automorphes.
Forme paraboliqueEn mathématiques, une forme parabolique (parfois appelée forme cuspidale, selon l'anglais cusp form) est une forme modulaire vérifiant des conditions d'annulation aux pointes. La parabole est une des trois coniques (avec l'hyperbole, et l'ellipse dont le cercle peut être considéré comme un cas particulier) découvertes par les mathématiciens grecs en tant qu'intersection d'un cône par un plan (du grec kônos). vignette|302x302px|Équation réduite y2 = 2px, paramètre de la parabole Nom de la fonction associée : trinôme du second degré.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.