Congruences de RamanujanEn mathématiques, les congruences de Ramanujan sont des congruences remarquables à propos de la fonction de partition p(n). Le mathématicien Srinivasa Ramanujan a découvert les congruences: Cela signifie que Si un nombre est congru à 4 modulo 5, c'est-à-dire qu'il est compris dans la suite 4, 9, 14, 19, 24, 29, . . . alors le nombre de ses partitions est un multiple de 5. Si un nombre est congru à 5 modulo 7, c'est-à-dire qu'il est compris dans la suite 5, 12, 19, 26, 33, 40, . . .
Quadrature du cerclevignette|Le carré de côté a la même aire que le cercle de rayon 1. La quadrature du cercle est un problème classique de mathématiques apparaissant en géométrie. Il fait partie des trois grands problèmes de l'Antiquité, avec la trisection de l'angle et la duplication du cube. Le problème consiste à construire un carré de même aire qu'un disque donné à l'aide d'une règle et d'un compas (voir Nombre constructible). La quadrature du cercle nécessiterait la construction à la règle et au compas de la racine carrée du nombre π, ce qui est impossible en raison de la transcendance de π.
Modular lambda functionIn mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.
J-invariantLe j-invariant, parfois appelé fonction j, est une fonction introduite par Felix Klein pour l'étude des courbes elliptiques, qui a depuis trouvé des applications au-delà de la seule géométrie algébrique, par exemple dans l'étude des fonctions modulaires, de la théorie des corps de classes et du monstrous moonshine. On travaille dans le . Soient quatre points distincts , leur birapport est : Cette quantité est invariante par homographies du plan, mais dépend de l'ordre des quatre nombres considérés.
Opérateur de HeckeEn mathématiques, en particulier dans la théorie des formes modulaires, un opérateur de Hecke, étudié par Erich Hecke, est un certain type d'opérateur de « moyennage » qui joue un rôle important dans la structure des espaces vectoriels de formes modulaires et de représentations automorphes plus générales. Mordell (1917) a utilisé les opérateurs de Hecke sur les formes modulaires dans un article sur les formes paraboliques spéciales de Ramanujan, bien avant la théorie générale développée par Hecke (1937a, 1937b).
Fausse fonction thêtaEn mathématiques, et plus précisément en analyse, une fausse forme modulaire est la partie holomorphe d'une harmonique, et une fausse fonction thêta est essentiellement une fausse forme modulaire de poids 1/2. Les premiers exemples de fausses fonctions thêta furent décrits par Srinivasa Ramanujan dans sa dernière lettre à Godfrey Harold Hardy (en 1920) et dans son cahier perdu ; il a découvert alors que ces fonctions se comportent en partie comme les fonctions thêta, d'où leur nom (mock theta functions en anglais).
Conjecture de RamanujanEn mathématiques, la conjecture de Ramanujan, due à Srinivasa Ramanujan (et démontrée par Pierre Deligne en 1973), prédit certaines propriétés arithmétiques ainsi que le comportement asymptotique de la fonction tau qu'il a définie. La conjecture de Ramanujan généralisée, ou conjecture de Ramanujan-Petersson, introduite par Hans Petersson en 1930, en est une généralisation à d'autres formes modulaires ou automorphes.
Forme paraboliqueEn mathématiques, une forme parabolique (parfois appelée forme cuspidale, selon l'anglais cusp form) est une forme modulaire vérifiant des conditions d'annulation aux pointes. La parabole est une des trois coniques (avec l'hyperbole, et l'ellipse dont le cercle peut être considéré comme un cas particulier) découvertes par les mathématiciens grecs en tant qu'intersection d'un cône par un plan (du grec kônos). vignette|302x302px|Équation réduite y2 = 2px, paramètre de la parabole Nom de la fonction associée : trinôme du second degré.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
Fonction êta de DedekindLa fonction êta de Dedekind est une fonction définie sur le demi-plan de Poincaré formé par les nombres complexes de partie imaginaire strictement positive. Pour un tel nombre complexe , on pose et la fonction êta est alors : , en posant . La fonction êta est holomorphe dans le demi-plan supérieur mais n'admet pas de prolongement analytique en dehors de cet ensemble. La fonction êta vérifie les deux équations fonctionnelles et La seconde se généralise : soient des entiers tels que (donc associés à une transformation de Möbius appartenant au groupe modulaire), avec .