Concepts associés (22)
Schéma (géométrie algébrique)
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Théorème des zéros de Hilbert
Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d'algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert. Une algèbre de type fini sur K est un anneau quotient d'un anneau de polynômes K[X_1,...,X_n] par un idéal. Sa structure de K-algèbre est induite par celle de K[X_1,...,X_n]. Il existe plusieurs formulations du théorème des zéros de Hilbert. Théorème 1 (Lemme de Zariski).
Anneau artinien
En algèbre commutative, un anneau artinien est un anneau vérifiant la condition de chaîne descendante pour ses idéaux. Les anneaux artiniens doivent leur nom au mathématicien autrichien Emil Artin. On dit qu'un anneau commutatif (unitaire) A est un anneau artinien si c'est un A-module artinien, autrement dit, si toute suite décroissante d'idéaux de A est stationnaire. Cela équivaut à dire que tout ensemble non vide d'idéaux de A admet un élément minimal (pour la relation d'inclusion).
Radical de Jacobson
En algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.
Idéal
En mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
Idéal premier
En algèbre commutative, un idéal premier d'un anneau commutatif unitaire est un idéal tel que le quotient de l'anneau par cet idéal est un anneau intègre. Ce concept généralise la notion de nombre premier à des anneaux à la structure moins simple d'accès que l'anneau des entiers relatifs. Ils jouent un rôle particulièrement important en théorie algébrique des nombres. thumb|Richard Dedekind (1831-1916), formalisateur du concept d'idéal.
Anneau simple
En mathématiques, un anneau simple est une des structures algébriques utilisées en algèbre générale. Un anneau est dit simple s'il est non nul et n'admet pas d'autres idéaux bilatères que {0} et lui-même. Un anneau commutatif est simple si et seulement si c'est un corps commutatif. Plus généralement, un corps (non nécessairement commutatif) est un anneau simple, et l'anneau des matrices carrées d'ordre n à coefficients dans un corps est simple.
Produit d'anneaux
En algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. Cette construction peut se faire de la manière suivante : si (Ai) est une famille d'anneaux, le produit cartésien Π Ai peut être muni d'une structure d'anneau en définissant les opérations composante par composante, i.e. (ai) + (bi) = (ai + bi) (ai) · (bi) = (ai · bi) 1 = (1) À la place de Π1≤i≤k Ai nous pouvons aussi écrire A1 × A2 × ... × Ak. Un exemple est l'anneau Z/nZ des entiers modulo n.
Dimension de Krull
En mathématiques, et plus particulièrement en géométrie algébrique, la taille et la complexité d'une variété algébrique (ou d'un schéma) est d'abord mesurée par sa dimension. Elle est fondée sur la topologie de Zariski et coïncide avec l'intuition dans le cas des espaces affines. Espace topologique irréductible Soit un espace topologique. On dit que est irréductible si tout ouvert non vide de est partout dense dans . Cela revient à dire que si et sont deux parties fermées dont la réunion est égale à , alors l'une d'entre elles est égale à .
Minimal ideal
In the branch of abstract algebra known as ring theory, a minimal right ideal of a ring R is a non-zero right ideal which contains no other non-zero right ideal. Likewise, a minimal left ideal is a non-zero left ideal of R containing no other non-zero left ideals of R, and a minimal ideal of R is a non-zero ideal containing no other non-zero two-sided ideal of R . In other words, minimal right ideals are minimal elements of the partially ordered set (poset) of non-zero right ideals of R ordered by inclusion.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.