MonomorphismeDans le cadre de l'algèbre générale ou de l'algèbre universelle, un monomorphisme est simplement un morphisme injectif. Dans le cadre plus général de la théorie des catégories, un monomorphisme est un morphisme simplifiable à gauche, c'est-à-dire un morphisme tel que pour tout , ou encore : l'application Les monomorphismes sont la généralisation aux catégories des fonctions injectives ; dans certaines catégories, les deux notions coïncident d'ailleurs. Mais les monomorphismes restent des objets plus généraux (voir l'exemple ci-dessous).
Morphisme de groupesUn morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
SurjectionEn mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l' est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »).
Continuité uniformeEn topologie, la continuité uniforme (ou l'uniforme continuité) est une propriété plus forte que la continuité, et se définit dans les espaces métriques ou plus généralement les espaces uniformes. Contrairement à la continuité, la continuité uniforme n'est pas une notion « purement topologique » c'est-à-dire ne faisant intervenir que des ouverts : sa définition dépend de la distance ou de la structure uniforme. Le contexte typique de la définition de la continuité uniforme est celui des espaces métriques. N.
Morphisme d'anneauxUn morphisme d'anneaux est une application entre deux anneaux (unitaires) A et B, compatible avec les lois de ces anneaux et qui envoie le neutre multiplicatif de A sur le neutre multiplicatif de B. Un morphisme d'anneaux est une application f entre deux anneaux (unitaires) A et B qui vérifie les trois propriétés suivantes : Pour tous a, b dans A : f(a + b) = f(a) + f(b) f(a ∙ b) = f(a) ∙ f(b) f(1A) = 1B.
Ensemble des parties d'un ensembleEn mathématiques, l'ensemble des parties d'un ensemble, parfois appelé ensemble puissance, est l'ensemble de tous les sous-ensembles d'un ensemble donné (y compris cet ensemble lui-même et l'ensemble vide). Soit un ensemble. L'ensemble des parties de est l'ensemble, généralement noté , dont les éléments sont les sous-ensembles de : Il est également parfois noté , ou (gothique), ou encore (P de Weierstrass). Dans la théorie des ensembles de Zermelo, l'existence, pour tout ensemble , d'un tel ensemble , est postulée par l'axiome de l'ensemble des parties, et son unicité résulte de l'axiome d'extensionnalité.
Morphisme zéroDans la théorie des catégories, une branche des mathématiques, un morphisme zéro est un type spécial de morphisme présentant certaines propriétés comme celles des morphismes vers et depuis un objet zéro . Supposons que C soit une catégorie, et f : X → Y un morphisme de la catégorie C. Le morphisme f est appelé morphisme constant (ou encore morphisme zéro à gauche) si pour tout objet W de la catégorie C et tout morphisme de cette catégorie , on a fg = fh.
Composition of relationsIn the mathematics of binary relations, the composition of relations is the forming of a new binary relation R; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent.
Catégorie enrichieUne catégorie enrichie sur une catégorie monoïdale , ou -catégorie est une extension du concept mathématique de catégorie, où les morphismes, au lieu de former une classe ou un ensemble dépourvu de structure, sont des éléments de . Le concept de catégorie enrichie part de l'observation que dans de nombreuses situations, les morphismes ont une structure naturelle d'espace vectoriel ou topologique. La catégorie doit être monoïdale afin de pouvoir définir la composition des morphismes, appelés dans ce cas hom-objets au lieu de hom-sets.
Opposite categoryIn , a branch of mathematics, the opposite category or dual category Cop of a given C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, . An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤op by x ≤op y if and only if y ≤ x.