Concepts associés (29)
Problème d'affectation
En informatique, plus précisément en recherche opérationnelle et d'optimisation combinatoire, le problème d'affectation consiste à attribuer au mieux des tâches à des agents. Chaque agent peut réaliser une unique tâche pour un coût donné et chaque tâche doit être réalisée par un unique agent. Les affectations (c'est-à-dire les couples agent-tâche) ont toutes un coût défini. Le but est de minimiser le coût total des affectations afin de réaliser toutes les tâches.
Théorème de Hall
En mathématiques, le théorème de Hall ou lemme des mariages est un résultat combinatoire qui donne une condition nécessaire et suffisante, sur une famille d'ensembles finis, pour qu'il soit possible de choisir des éléments distincts, un par ensemble. Il a été démontré par Philip Hall et a été à l'origine de la théorie du couplage dans les graphes. On appelle système de représentants distincts d'une suite de n ensembles finis , toute suite de n éléments distincts tels que pour tout , appartienne à .
Maximum cardinality matching
Maximum cardinality matching is a fundamental problem in graph theory. We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this problem is equivalent to the task of finding a matching that covers as many vertices as possible.
Perfect matching
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.
Vertex cover
In graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Stable (théorie des graphes)
thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Coloration des arêtes d'un graphe
thumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Problème de l'isomorphisme de sous-graphes
vignette|Le problème est de savoir si un graphe contient un autre graphe comme sous-graphe. En informatique théorique, le problème de l'isomorphisme de sous-graphes est le problème de décision suivant : étant donnés deux graphes G et H, déterminer si G contient un sous-graphe isomorphe à H. C'est une généralisation du problème de l'isomorphisme de graphes. Soient et deux graphes. Le problème de décision de l'isomorphisme de sous-graphe est : « Est-ce qu'il existe un sous-graphe , avec et , tel qu'il existe une bijection telle que ? ».
Double factorial
In mathematics, the double factorial of a number n, denoted by n!!, is the product of all the positive integers up to n that have the same parity (odd or even) as n. That is, Restated, this says that for even n, the double factorial is while for odd n it is For example, 9!! = 9 × 7 × 5 × 3 × 1 = 945. The zero double factorial 0!! = 1 as an empty product. The sequence of double factorials for even n = 0, 2, 4, 6, 8,... starts as The sequence of double factorials for odd n = 1, 3, 5, 7, 9,...
Algorithme glouton
Un algorithme glouton (greedy algorithm en anglais, parfois appelé aussi algorithme gourmand, ou goulu) est un algorithme qui suit le principe de réaliser, étape par étape, un choix optimum local, afin d'obtenir un résultat optimum global. Par exemple, dans le problème du rendu de monnaie (donner une somme avec le moins possible de pièces), l'algorithme consistant à répéter le choix de la pièce de plus grande valeur qui ne dépasse pas la somme restante est un algorithme glouton.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.