Milieu de gamme (statistique)En statistique, le milieu de gamme ou le milieu extrême d'un ensemble de valeurs de données statistiques est la moyenne arithmétique des valeurs maximales et minimales dans un ensemble de données, défini comme: Le milieu de gamme est le point médian de la gamme ; en tant que tel, c'est une mesure de la tendance centrale. Le milieu de gamme est rarement utilisé dans l'analyse statistique pratique, car il manque d'efficacité en tant qu'estimateur pour la plupart des distributions d'intérêt, car il ignore tous les points intermédiaires et manque de robustesse, car les valeurs aberrantes le modifient considérablement.
Moyenne quadratiqueLa (rms en anglais, pour root mean square) d'un ensemble de nombres est la racine carrée de la moyenne arithmétique des carrés de ces nombres. Elle correspond au cas de la moyenne d'ordre p. Par exemple, l'écart type dans une population est la moyenne quadratique des distances à la moyenne. La moyenne quadratique est supérieure ou égale à la moyenne arithmétique. Dans une série de valeurs, une valeur particulièrement élevée par rapport aux autres aura plus d'impact sur la moyenne quadratique de la série que sur la moyenne arithmétique.
Moyenne arithmétiqueEn mathématiques, la moyenne arithmétique d'une liste de nombres réels est la somme des valeurs divisée par le nombre de valeurs. Il s’agit de la moyenne au sens usuel du terme, sans coefficients, l’adjectif « arithmétique » la distinguant d’autres moyennes mathématiques moins courantes. La moyenne peut être notée à l’aide de son initiale m, M ou avec la lettre grecque correspondante μ. Lorsque la moyenne est calculée sur une liste notée (x, x, ... , x), on la note habituellement à l’aide du diacritique macron, caractère unicode u+0304.
Asymétrie (statistiques)En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Valeur absolue des écartsEn statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
Moyenne tronquéeUne moyenne tronquée, ou moyenne réduite, est une mesure statistique de centralité, similaire à la moyenne arithmétique et à la médiane, qui consiste à calculer une moyenne arithmétique en éliminant les valeurs extrêmes. Les , ont été inventées pour pallier la sensibilité des statistiques aux valeurs aberrantes, ce qu'on appelle la robustesse statistique.
Moyenne quasi-arithmétiqueEn mathématiques et en statistiques, les moyennes quasi-arithmétiques, ou moyennes de Kolmogorov ou encore moyennes selon une fonction f constituent une généralisation de la moyenne (de Hölder) d'ordre p (qui est elle-même une généralisation des moyennes usuelles : arithmétique, géométrique). Elles sont paramétrées par une fonction f. Soit une fonction d'un intervalle dans les nombres réels, continue et injective. La moyenne selon la fonction f des nombres est définie par , que l'on peut aussi écrire Il est nécessaire que soit injective pour que son inverse soit définie.
TrimeanIn statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis.
Moyenne géométriqueEn mathématiques, la moyenne géométrique est un type de moyenne. La moyenne géométrique de deux nombres positifs a et b est le nombre positif c tel que : Cette égalité étant une proportion, ceci justifie l'autre appellation « moyenne proportionnelle » de la moyenne géométrique. vignette|La moyenne géométrique des côtés d'un rectangle est donnée par un carré de même aire. Elle est construite par un cercle tangent aux deux cercles définis par les côtés du rectangle et les séparant.
Moyenne harmoniqueLa moyenne harmonique H de nombres réels strictement positifs a1, ..., a est définie par : C'est l'inverse de la moyenne arithmétique des inverses des termes. La moyenne harmonique est donc utilisée lorsqu'on veut déterminer un rapport moyen, dans un domaine où il existe des liens de proportionnalité inverses. Dans certains cas, la moyenne harmonique donne la véritable notion de « moyenne ».