Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
Couvre la transition du modèle à six vertex à la percolation FK, en se concentrant sur les phénomènes critiques et les transitions de phase dans les systèmes bidimensionnels.
Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.
Explore les limites et les colimits dans la théorie des catégories, en discutant de leurs définitions, propriétés et applications, y compris la non-existence de limites dans certaines catégories et les relations entre les limites et les colimits sous les functeurs.
Explore la dualité forte, le relâchement complémentaire, l'interprétation économique et les scénarios de problèmes stochastiques dans la programmation linéaire.
Explore l'optimisation primaire-duelle, la conjugaison des fonctions, la dualité forte, et les méthodes de pénalité quadratique en mathématiques de données.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.