Théorème de réarrangement de RiemannEn mathématiques, le théorème de réarrangement de Riemann est un théorème, nommé en l'honneur du mathématicien Bernhard Riemann, d'après lequel si une série à termes réels est semi-convergente, alors on peut réarranger ses termes pour qu'elle converge vers n'importe quel réel, ou bien tende vers plus ou moins l'infini. Il en résulte que dans R, toute série inconditionnellement convergente est absolument convergente (autrement dit : toute famille sommable est absolument sommable).
Intégrale impropreEn mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).
Règle de Cauchyvignette|Diagramme de décision pour l'application de la règle de Cauchy En mathématiques, la règle de Cauchy, qui doit son nom au mathématicien français Augustin Cauchy, est un critère de convergence pour une série à termes réels ou complexes, ou plus généralement à termes dans un espace vectoriel normé. Cette règle est parfois confondue avec le « critère de Cauchy » selon lequel, dans un espace complet comme R ou C, toute suite de Cauchy converge.
Convergence inconditionnelleSoient X un groupe topologique abélien — par exemple un espace vectoriel normé — et (x) une suite d'éléments de X. On dit que la série ∑ x converge inconditionnellement ou qu'elle est commutativement convergente si, pour toute permutation σ : N → N, la série converge dans X. Toute série absolument convergente dans un espace de Banach X est inconditionnellement convergente. La réciproque est vraie si et seulement si X est de dimension finie. Une base de Schauder de X est dite inconditionnelle si pour tout x ∈ X, la série représentant x converge inconditionnellement.
Règle de d'Alembertvignette|Jean Le Rond d'Alembert, mathématicien français. La règle de d'Alembert (ou critère de d'Alembert), doit son nom au mathématicien français Jean le Rond d'Alembert. C'est un test de convergence pour une série à termes positifs. Dans certains cas, elle permet d'établir la convergence absolue d'une série à termes complexes ou vectoriels, ou au contraire sa divergence. Soit (u) une suite de réels strictement positifs. On note et les limites inférieure et supérieure des quotients successifs : Si , alors la série de terme général u converge.
Weierstrass M-testIn mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (1815-1897). Weierstrass M-test.
Série alternéeEn mathématiques, et plus particulièrement en analyse, une série alternée est un cas particulier de série à termes réels, dont la forme particulière permet d'avoir des résultats de convergence notables. Une série à termes réels est dite alternée si ses termes sont de signes alternés, c'est-à-dire si elle est de la forme : avec ai des nombres réels positifs. Le principal critère de convergence concernant les séries alternées permet de montrer que certaines séries alternées non absolument convergentes sont convergentes, notamment la série harmonique alternée.
Test de convergenceEn mathématiques, les tests de convergence sont des méthodes de test de la convergence, de la convergence absolue ou de la divergence d'une série . Appliqués aux séries entières, ils donnent des moyens de déterminer leur rayon de convergence. Pour que la série converge, il est nécessaire que . Par conséquent, si cette limite est indéfinie ou non nulle, alors la série diverge. La condition n'est pas suffisante, et, si la limite des termes est nulle, on ne peut rien conclure. Toute série absolument convergente converge.