En probabilité et statistique, un processus ponctuel est un type particulier de processus stochastique pour lequel une réalisation est un ensemble de points isolés du temps et/ou de l'espace. Par exemple, la position des arbres dans une forêt peut être modélisée comme la réalisation d'un processus ponctuel.
Les processus ponctuels sont des objets très étudiés en probabilité et en statistique pour représenter et analyser des données spatialisées qui interviennent dans une multitude de domaines telle que l'écologie, l'astronomie, l'épidémiologie, la géographie, la sismologie, les télécommunications, la science des matériaux et beaucoup d'autres.
Le cas particulier des processus ponctuels sur la droite réelle est très étudié, la connaissance de la distance entre deux points consécutifs caractérisant le processus. Ce type de processus ponctuel est très utilisé pour modéliser des événements aléatoires dans le temps, tels que l'arrivée d'un client (), l'impulsion d'un neurone...
En mathématiques, un processus ponctuel est un élément aléatoire dont les valeurs sont des motifs de points, c'est-à-dire des « collections » de points sur un ensemble .
Il est possible de généraliser en définissant un motif de points comme étant une mesure de comptage localement finie.
Soit un espace métrique localement compact équipé de sa tribu borélienne . On note l'ensemble des motifs de points de , c'est-à-dire l'ensemble des sous-ensembles localement finis de . Un élément de sera appelé "configuration" et sera noté .
On munit de la tribu engendrée par les applications de comptage : , où B est un compact de et où désigne le cardinal de l'ensemble fini considéré.
Un processus ponctuel est alors une application mesurable d'un espace de probabilité vers l'espace mesuré .
L'exemple le plus commun d'espace est l'espace euclidien ou un de ses sous-espaces. Mais les processus ponctuels ne sont pas limités à ces exemples.
Un cas particulier des processus ponctuels est celui des processus ponctuels définis sur la droite réelle (ou la demi-droite réelle ).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
En théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable .
Un processus de Poisson composé, nommé d'après le mathématicien français Siméon Denis Poisson, est un processus stochastique en temps continu à droite limité à gauche (Càdlàg). C'est en particulier un processus de Lévy. Un processus de Poisson composé est un processus aléatoire indexé par le temps qui s’écrit où est un processus de Poisson et est une suite de variables aléatoires indépendantes et identiquement distribuées et indépendantes de . Comme tout processus de Lévy, le processus de Poisson composé est à accroissements indépendants et à accroissements stationnaires.
Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times. A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Couvre les modèles de précipitations déterministes et stochastiques dans l'ingénierie des ressources en eau, y compris la génération, l'étalonnage et des modèles spatialement explicites.
vignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
vignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Un processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...
We study the limit behaviour of sequences of non-convex, vectorial, random integral functionals, defined on W1,1, whose integrands are ergodic and satisfy degenerate linear growth conditions. The latter involve suitable random, scale-dependent weight-funct ...
Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, ...