Uniform tilingIn geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
IcosidodécaèdreLe solide d'Archimède de vingt faces triangulaires et douze faces pentagonales s’appelle un icosidodécaèdre. Le mot “icosidodécaèdre” commence par “icos”, qui signifie “vingt”, soit le nombre de faces du solide de Platon de douze sommets, qui est le dual du “dodécaèdre” de Platon, dont les douze faces sont pentagonales. Cette image‐ci montre l’icosidodécaèdre de face et de dessus, avec deux faces triangulaires horizontales. De dessus le contour est un dodécagone, qui entoure dix triangles et six pentagones.
LosangeUn losange est un quadrilatère dont les côtés ont tous la même longueur, ou encore un parallélogramme ayant au moins deux côtés consécutifs de même longueur. Il était anciennement appelé rhombe du grec ρόμβος (et porte toujours un nom tiré de cette étymologie dans de nombreuses langues, comme rhombus en anglais ou encore rombo en espagnol et en italien). L'adjectif qui lui est relatif est rhombique.
Grand icosidodécaèdreIn geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r{3,}. It is the rectification of the great stellated dodecahedron and the great icosahedron. It was discovered independently by , and . The figure is a rectification of the great icosahedron or the great stellated dodecahedron, much as the (small) icosidodecahedron is related to the (small) icosahedron and (small) dodecahedron, and the cuboctahedron to the cube and octahedron.
Dodécaèdre rhombiqueEn géométrie, le dodécaèdre rhombique (aussi appelé granatoèdre) est un polyèdre convexe à 12 faces rhombiques identiques. Solide de Catalan, zonoèdre, il est le dual du cuboctaèdre. Pour le différencier du dodécaèdre de Bilinski, autre dodécaèdre rhombique à 12 faces identiques, on précise parfois dodécaèdre rhombique de première espèce. La grande diagonale de chaque face vaut exactement √2 fois la longueur de la petite diagonale, ainsi, les angles aigus de chaque face mesurent 2 tan(1/√2), ou approximativement 70,53°.
Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Density (polytope)In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
Hexagramme (géométrie)A hexagram (Greek) or sexagram (Latin) is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. Since there are no true regular continuous hexagrams, the term is instead used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices. In three dimensions, the analogous compound is the stellated octahedron, and in four dimensions the compound of two 5-cells is obtained.
Dodécagonedroite|vignette|Un dodécagone régulier et ses angles remarquables. Un dodécagone est une figure de géométrie plane. C'est un polygone à 12 sommets, donc 12 côtés et 54 diagonales. La somme des angles internes d'un dodécagone non croisé est égale à . Un dodécagone régulier est un dodécagone dont les douze côtés ont la même longueur et dont les angles internes ont la même mesure. Il y en a deux : un étoilé (le dodécagramme noté {12/5}) et un convexe (noté {12}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le dodécagone régulier ».
OctogoneUn octogone (du grec ὀκτάγωνον oktágōnon, cf. ὀκτώ oktṓ « huit » et γωνία gōnía « angle ») est un polygone à huit sommets, donc huit côtés et vingt diagonales. La somme des angles internes d'un octogone non croisé est égale à , soit °. Un octogone régulier est un octogone dont les huit côtés ont la même longueur et dont les angles internes ont la même valeur. Il existe un octogone régulier étoilé (l'octagramme régulier, noté {8/3}) mais usuellement, « octogone régulier » désigne implicitement l'octogone régulier convexe, noté {8}.