Polygone convexeEn géométrie, un polygone convexe est un polygone simple dont l'intérieur est un ensemble convexe. Un polygone simple qui n'est pas convexe est dit concave. Pour un polygone simple, les propriétés suivantes sont équivalentes : le polygone est convexe, les angles du polygone sont tous inférieurs à 180 degrés, tout segment joignant deux sommets du polygone est inclus dans la composante fermée bornée délimitée par le polygone. Le polygone est toujours entièrement inclus dans un demi-plan dont la frontière porte un côté quelconque du polygone.
Théorème de Carathéodory (géométrie)vignette|Par exemple le point (1/4, 1/4) de l'enveloppe convexe des points (0, 0), (1, 0), (1, 1), (0, 1) se trouve dans l'intérieur du triangle (0, 0), (1, 0), (0, 1). Le théorème de Carathéodory est un théorème de géométrie relatif aux enveloppes convexes dans le contexte des espaces affines de dimension finie. Dans le plan, il affirme que tout point dans l'enveloppe convexe d'un ensemble de points est dans l'intérieur d'un triangle dont les sommets sont dans (l'enveloppe convexe d'un ensemble de points est l'ensemble des barycentres de trois points de ).
Absolutely convex setIn mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. A subset of a real or complex vector space is called a and is said to be , , and if any of the following equivalent conditions is satisfied: is a convex and balanced set.
Conical combinationGiven a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).
Sous-espace affine engendréEn géométrie, dans un espace affine , le sous-espace affine engendré par une partie non vide , également dénommé l'enveloppe affine de , est le plus petit sous-espace affine de contenant . Dans un espace affine, l'intersection d'une famille (non vide) de sous-espaces affines est soit l'ensemble vide, soit un sous-espace affine et l'espace lui-même est un sous-espace, ce qui justifie la définition suivante : Soient et des espaces affines et , deux parties non vides de et une partie non vide de .
Fonction concaveEn mathématiques, une fonction f est dite concave lorsque la fonction opposée –f est convexe. Le fait que l'on préfère commencer par définir la notion de fonction convexe et d'en déduire celle de fonction concave trouve son origine dans le fait que l'on définit aisément la notion d'ensemble convexe, alors que celle d'« ensemble concave » est moins naturelle. On définit alors les fonctions convexes comme celles ayant un épigraphe convexe (les fonctions concaves ont un hypographe convexe).
Unit sphereIn mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk.
Points et parties remarquables de la frontière d'un convexeFace à un polyèdre convexe de l'espace de dimension 3, qu'il soit familier comme un cube ou plus compliqué, on sait spontanément reconnaître les points où le convexe est « pointu », ses sommets, puis subdiviser les points restants entre points des arêtes et points des faces. Cet article présente quelques définitions qui étendent ces concepts aux ensembles convexes généraux, de dimension quelconque, à la frontière éventuellement incurvée.
Théorème de Radon (géométrie)Le théorème de Radon, ou lemme de Radon, sur les ensembles convexes affirme que tout ensemble contenant éléments de admet une partition en deux parties dont les enveloppes convexes et se rencontrent. Tout ensemble contenant éléments de admet une partition en deux parties dont les enveloppes convexes et se rencontrent. Une telle partition est alors appelée partition de Radon, et un point de l'intersection des enveloppes est appelé point de Radon (il ne s'agit pas a priori d'un des points ). Prenons l'exemple .
Théorème de HellyLe théorème de Helly est un résultat combinatoire de géométrie sur les convexes. Ce résultat a été prouvé en 1913 par Eduard Helly, et il a été publié par Johann Radon en 1921. Il est facile d'étendre le théorème à des familles infinies d'ensembles convexes, en rajoutant une hypothèse de compacité Théorème|Corollaire|Si est une collection de sous-ensembles compacts convexes de et que pour toute partie finie de cardinal supérieur ou égal à , alors l'intersection de tous les est non vide, c'est-à-dire : .