Homological mirror symmetryHomological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory. In an address to the 1994 International Congress of Mathematicians in Zürich, speculated that mirror symmetry for a pair of Calabi–Yau manifolds X and Y could be explained as an equivalence of a constructed from the algebraic geometry of X (the of coherent sheaves on X) and another triangulated category constructed from the symplectic geometry of Y (the derived ).
BraneDans la théorie des cordes, une brane, ou p-brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d'univers, qui est une charge source pour certaines interactions de la même façon qu'une particule chargée, telle l'électron par exemple, est une source pour l'interaction électromagnétique. Dans le langage des branes, une particule chargée est appelée une 0-brane (0 dimension spatiale et 1 dimension temporelle).
Dualité TEn théorie des cordes et des supercordes la dualité T désigne une dualité particulière sous laquelle un (ou plusieurs) rayon de compactification est inversé. Considérons dans un premier temps le cas le plus simple de dualité T. Si on compactifie la théorie bosonique sur un cercle de rayon alors les états de vide de la théorie sont doublement quantifiés de la façon suivante: le nombre quantique indique que la corde associée (ou plus précisément son centre de masse) possède un moment dans la direction de compactification.
Histoire de la théorie des cordesCet article résume l'histoire de la théorie des cordes. La théorie des cordes est une théorie de la physique moderne qui tente d'unifier la mécanique quantique (physique aux petites échelles) et la théorie de la relativité générale (nécessaire pour décrire la gravitation de manière relativiste). La principale particularité de la théorie des cordes est que son ambition ne s'arrête pas à cette réconciliation, mais qu'elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout ou de théorie de grande unification.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
OrbifoldEn mathématiques, un orbifold (parfois appelé aussi orbivariété) est une généralisation de la notion de variété contenant de possibles singularités. Ces espaces ont été introduits explicitement pour la première fois par Ichirō Satake en 1956 sous le nom de V-manifolds. Pour passer de la notion de variété (différentiable) à celle d'orbifold, on ajoute comme modèles locaux tous les quotients d'ouverts de par l'action de groupes finis. L'intérêt pour ces objets a été ravivé considérablement à la fin des années 70 par William Thurston en relation avec sa conjecture de géométrisation.
S-dualityIn theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier. In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric and magnetic fields.
Théorie des supercordesthumb|Vue d'artiste de la théorie des supercordes. La théorie des supercordes est une tentative pour expliquer l'existence de toutes les particules et forces fondamentales de la nature, en les modélisant comme les vibrations de minuscules cordes supersymétriques. Au début du , elle est considérée comme la plus féconde des théories pour une gravité quantique, même si elle souffre des mêmes défauts que la théorie des cordes en raison de l'impossibilité de la vérifier par l'expérimentation.
Shing-Tung YauShing-Tung Yau ( ; ku1 sêng-tông), né le à Shantou, est un mathématicien chinois connu pour ses travaux en géométrie différentielle, et est à l'origine de la théorie des variétés de Calabi-Yau. Shing-Tung Yau naît dans la ville de Shantou, province de Guangdong (Chine) dans une famille de huit enfants. Son père, un professeur de philosophie, est mort alors qu'il avait quatorze ans. Il déménage à Hong Kong avec sa famille, où il étudie les mathématiques à l'université chinoise de Hong Kong de 1966 à 1969.