Nombre hypercomplexeEn mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l'arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans incluant Hermann Hankel, Georg Frobenius, Eduard Study et Élie Cartan. L'étude des systèmes hypercomplexes particuliers conduit à leur représentation avec l'algèbre linéaire. Les nombres hypercomplexes sont utilisés en physique quantique pour calculer la probabilité d'un événement en tenant compte du spin de la particule.
Algèbre alternativeEn algèbre, une algèbre alternative est une algèbre dans laquelle la multiplication n'est pas nécessairement associative mais satisfait à deux identités exprimant l'alternativité, à savoir pour x et y quelconques dans l'algèbre. Toute algèbre associative est évidemment alternative mais certaines algèbres strictement non associatives telles que les octonions le sont aussi. Les algèbres alternatives sont ainsi nommées car ce sont les algèbres pour lesquelles l'associateur est alterné.
Algèbre de compositionEn mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie.
Associativité des puissancesEn algèbre, l'associativité des puissances est une forme affaiblie de l'associativité. Un magma est dit associatif des puissances si le sous-magma engendré par n'importe quel élément est associatif. Concrètement, cela signifie que si une opération est effectuée plusieurs fois sur un même élément , l'ordre dans lequel sont effectuées ces opérations n'a pas d'importance ; ainsi, par exemple, . Tout magma associatif est évidemment associatif des puissances.
Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Algèbre d'AlbertEn mathématiques, une algèbre d'Albert est une algèbre de Jordan exceptionnelle de dimension 27. Elle porte le nom d'A. Adrian Albert, pionnier de l'étude des algèbres non associatives, qui travaillait le plus souvent sur le corps des nombres réels. Sur les nombres réels, il existe trois telles algèbres de Jordan à isomorphisme près. L'une d'elles, mentionnée pour la première fois par Pascual Jordan, John von Neumann et Eugene Wigner et étudiée par A.
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Okubo algebraIn algebra, an Okubo algebra or pseudo-octonion algebra is an 8-dimensional non-associative algebra similar to the one studied by Susumu Okubo. Okubo algebras are composition algebras, flexible algebras (A(BA) = (AB)A), Lie admissible algebras, and power associative, but are not associative, not alternative algebras, and do not have an identity element. Okubo's example was the algebra of 3-by-3 trace-zero complex matrices, with the product of X and Y given by aXY + bYX – Tr(XY)I/3 where I is the identity matrix and a and b satisfy a + b = 3ab = 1.