Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Projection stéréographiqueEn géométrie et en cartographie, la projection stéréographique est une projection cartographique azimutale permettant de représenter une sphère privée d'un point sur un plan. On convient souvent que le point dont on prive la sphère sera un des pôles de celle-ci ; le plan de projection peut être celui qui sépare les deux hémisphères, nord et sud, de la sphère, qu'on appelle plan équatorial. On peut également faire une projection stéréographique sur n'importe quel plan parallèle au plan équatorial pourvu qu'il ne contienne pas le point dont on a privé la sphère.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Géométrie conformeEn mathématiques, la géométrie conforme est l'étude de l'ensemble des transformations préservant l'angle (conformes) sur un espace. Dans un espace réel de dimension 2, la géométrie conforme est précisément la géométrie des surfaces de Riemann. Dans des espaces de dimension supérieure à 2, la géométrie conforme peut se référer soit à l'étude des transformations conformes de ce qu'on appelle les "espaces plats" (tels que les espaces euclidiens ou les sphères), soit à l'étude des variétés conformes qui sont des variétés riemanniennes ou pseudo-riemanniennes.
Espace complètement régulierEn mathématiques, un espace complètement régulier (ou de Tikhonov) est un espace topologique vérifiant une propriété de séparation plus forte que la séparation usuelle et même que la propriété d'être régulier. Un espace topologique X vérifie la propriété de séparation T si pour tout point x de X et pour tout fermé F de X ne contenant pas x, il existe une application continue de X dans le segment [0, 1] valant 0 en x et 1 sur F (on dit alors que cette application sépare le point du fermé).
Point à l'infiniEn mathématiques, et plus particulièrement en géométrie et en topologie, on appelle point à l'infini un objet adjoint à l'espace que l'on veut étudier pour pouvoir plus commodément y définir certaines notions de limites « à l'infini », ou encore pour obtenir des énoncés plus uniformes, tels que « deux droites se coupent toujours en un point, situé à l'infini si elles sont parallèles ». La notion de point à l'infini apparait au dans le cadre du développement des méthodes de la perspective conique, avec l'invention de la « costruzione abbreviata » d'Alberti.
Compactifié d'AlexandrovEn mathématiques, et plus précisément en topologie générale, le compactifié d'Alexandrov (parfois écrit compactifié d'Alexandroff) est un objet introduit par le mathématicien Pavel Aleksandrov. Sa construction, appelée compactification d'Alexandrov, généralise celle de la sphère de Riemann à des espaces localement compacts quelconques auxquels elle revient à ajouter un « point à l'infini ». Soit un espace topologique localement compact. On peut, en ajoutant un point à , obtenir un espace compact.