S'insère dans l'évaluation du modèle, couvrant la théorie, l'erreur de formation, l'erreur de prédiction, les méthodes de rééchantillonnage et les critères d'information.
Explore l'inférence des hypothèses pour les estimands statistiques dans les modèles linéaires généralisés, en mettant l'accent sur des approches robustes et génériques.
Explore les applications de théorie des valeurs extrêmes, les stratégies d'estimation et les techniques de modélisation pour l'analyse statistique des extrêmes dans les séries chronologiques.
Introduit les marchés financiers, les séries chronologiques, les applications d'apprentissage automatique en finance et le traitement des langues naturelles.
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore la modélisation de la résistance au contact dans les dispositifs semi-conducteurs, en mettant l'accent sur le calcul de la tension de la porte et l'analyse des défauts.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.