SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.
Principe de correspondanceEn physique, le principe de correspondance, proposé la première fois par Niels Bohr en 1923, établit que le comportement quantique d'un système peut se réduire à un comportement de physique classique, quand les nombres quantiques mis en jeu sont très grands, ou quand la quantité d'action représentée par la constante de Planck peut être négligée devant l'action mise en œuvre dans le système. Les lois de la mécanique quantique sont extrêmement efficaces dans la description des objets microscopiques, comme les atomes ou les particules.
Espace vectoriel symplectiqueEn algèbre, un espace vectoriel est symplectique quand on le munit d'une forme symplectique, c'est-à-dire une forme bilinéaire alternée et non dégénérée. L'étude de ces espaces vectoriels présente quelques ressemblances avec l'étude des espaces préhilbertiens réels puisqu'on y définit également la notion d'orthogonalité. Mais il y a de fortes différences, ne serait-ce que parce que tout vecteur est orthogonal à lui-même. Les espaces vectoriels symplectiques servent de modèles pour définir les variétés symplectiques, étudiées en géométrie symplectique.
Crochet de PoissonEn mécanique hamiltonienne, on définit le crochet de Poisson de deux observables et , c'est-à-dire de deux fonctions sur l'espace des phases d'un système physique, par : où les variables, dites canoniques, sont les coordonnées généralisées et les moments conjugués . C'est un cas particulier de crochet de Lie. Avant de continuer, soulignons au passage qu'il existe deux conventions de signes au crochet de Poisson. La définition donnée ci-haut est dans la convention de signe employée par Dirac, Arnold , Goldstein et de Gosson pour n'en citer que quelques-uns.
Opérateur de CasimirEn mathématiques, et plus spécifiquement en algèbre, l'opérateur de Casimir est un opérateur particulier. Plus précisément, étant donné une algèbre de Lie munie d'une forme bilinéaire non-dégénérée et invariante, et une représentation de dimension finie, l'opérateur de Casimir est une application linéaire continue particulière sur l'espace vectoriel de la représentation. Cet opérateur commute avec la représentation. Pour l'algèbre de Lie et la représentation étudiées, cet opérateur joue le rôle du laplacien.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Quantifications canoniquesEn physique, la quantification canonique est une procédure pour quantifier une théorie classique, tout en essayant de préserver au maximum la structure formelle, comme les symétries, de la théorie classique. Historiquement, ce n'était pas tout à fait la voie de Werner Heisenberg pour obtenir la mécanique quantique, mais Paul Dirac l'a introduite dans sa thèse de doctorat de 1926, la «méthode de l'analogie classique» pour la quantification, et l'a détaillée dans son texte classique.
Théorème d'EhrenfestLe théorème d'Ehrenfest, du nom du physicien Paul Ehrenfest, relie la dérivée temporelle de la valeur moyenne d'un opérateur quantique au commutateur de cet opérateur avec le hamiltonien du système. Ce théorème concerne notamment tous les systèmes vérifiant le principe de correspondance. Le théorème d'Ehrenfest affirme que la dérivée temporelle de la valeur moyenne d’un opérateur (où l'opérateur qui renvoie la dérivée temporelle de l'observable concerné) est donnée par : où est un opérateur quantique quelconque et sa valeur moyenne.