Concept

Hexadécachore

Concepts associés (33)
Regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Icositétrachore
L'icositétrachore, ou « 24-cellules » est un 4-polytope régulier convexe. Il est spécifique à la dimension 4 dans le sens où il ne possède aucun équivalent dans une autre dimension. On le dénomme aussi « 24-cellules », « icositétratope », ou « hypergranatoèdre ». On peut définir un icositétrachore dans au moyen des sommets de coordonnées , ainsi que ceux obtenus en permutant ces coordonnées. Ils sont au nombre de 24.
Pentachore
En géométrie euclidienne de dimension quatre, le pentachore, ou 5-cellules, aussi appelé un pentatope ou 4-simplexe, est le polychore régulier convexe le plus simple. C'est la généralisation d'un triangle du plan ou d'un tétraèdre de l'espace. Le pentachore est constitué de 5 cellules, toutes des tétraèdres. C'est un polytope auto-dual. Sa figure de sommet est un tétraèdre. Son intersection maximale avec l'espace tridimensionnel est le prisme triangulaire. Le symbole de Schläfli du pentachore est {3,3,3}.
Hyperoctaèdre
thumb|Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4. Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube. Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, ..., 0). En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}.
Polytope régulier
droite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
Hécatonicosachore
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Composé polyédrique
Un composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Tesseract
En géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques.
Polygone de Petrie
En géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions. Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois.
Coxeter element
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number h of an irreducible root system. A Coxeter element is a product of all simple reflections.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.