Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les chaînes de bits de comptage, les comités, la distribution des boules, les mains de poker et les coefficients, avec des exemples du principe de Pigeonhole et de la sélection des cartes.
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
S'inscrit dans les limites fondamentales de l'apprentissage par gradient sur les réseaux neuronaux, couvrant des sujets tels que le théorème binôme, les séries exponentielles et les fonctions génératrices de moments.
Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Couvre la distribution normale, les statistiques inférentielles, la probabilité et la distribution binomiale dans le contexte du «problème du joueur malhonnête».
Présente les bases de l'analyse et de la gestion des risques en génie civil, couvrant les distributions, les rappels statistiques et les techniques d'interprétation mathématique.