Loi hypergéométriqueLa loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant : On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre. L'univers est l'ensemble des entiers de 0 à .
Problème d'urneEn théorie des probabilités, un problème d'urne est une représentation d'expériences aléatoires par un tirage aléatoire uniforme de boules dans une urne. L'urne est supposée contenir un certain nombre de boules qui sont indiscernables au toucher, c'est-à-dire que lorsque l'on tire une boule à l'intérieur, le tirage est aléatoire et chaque boule à l'intérieur de l'urne a la même chance d'être tirée. Il est possible de considérer plusieurs types de tirages : des tirages successifs avec ou sans remise, des tirages simultanés, des tirages successifs dans plusieurs urnes suivant des règles prédéfinies.
Dirichlet-multinomial distributionIn probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
Famille exponentielleEn théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Loi multinomialeEn théorie des probabilités, la loi multinomiale (aussi appelée distribution polynomiale) généralise la loi binomiale. Tandis que la loi binomiale concerne le nombre de succès lors d'une série de n épreuves de Bernoulli indépendantes, comme dans le jeu de pile ou face, la loi multinomiale ne se restreint pas aux épreuves comportant deux issues. La loi multinomiale s'applique par exemple au cas de n jets d'un dé à six faces : l'apparition du seul peut être modélisé par une loi binomiale alors que l'ensemble des apparitions des à 6 est modélisé par une loi multinomiale.
Conjugate priorIn Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Loi de Dirichletthumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.
OverdispersionIn statistics, overdispersion is the presence of greater variability (statistical dispersion) in a data set than would be expected based on a given statistical model. A common task in applied statistics is choosing a parametric model to fit a given set of empirical observations. This necessitates an assessment of the fit of the chosen model. It is usually possible to choose the model parameters in such a way that the theoretical population mean of the model is approximately equal to the sample mean.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.