En probabilités et statistique, la perte de mémoire est une propriété de certaines lois de probabilité : la loi exponentielle et la loi géométrique. On dit que ce sont des lois sans mémoire. Cette propriété est le plus souvent exprimée en termes de . Supposons qu'une variable aléatoire soit définie comme le temps passé dans un magasin de l'heure d'ouverture (disons neuf heures du matin) à l'arrivée du premier client. On peut donc voir comme le temps qu'un serveur attend avant l'arrivée du premier client. La propriété de perte de mémoire fait une comparaison entre les lois de probabilité du temps d'attente du serveur de neuf heures à l'arrivée du premier client, et celle du temps d'attente du serveur pour qu'un client arrive à compter d'un délai arbitraire après l'ouverture (disons, par exemple, une heure après l'ouverture soit à partir de dix heures du matin) sachant qu'aucun client n'est arrivé de l'ouverture à l'écoulement de ce délai arbitraire. La propriété de perte de mémoire affirme que ces lois sont les mêmes. Ainsi, dans notre exemple, ce n'est pas parce que le serveur a déjà attendu, en vain, pendant une heure l'arrivée d'un premier client qu'il peut espérer que le délai avant qu'arrive effectivement son premier client soit plus faible qu'au moment de l'ouverture. Les termes de perte de mémoire et sans mémoire ont parfois été utilisés différemment pour faire référence à des processus de Markov, dans ce cas la propriété de Markov assure que les propriétés des variables aléatoires dans le futur dépendent uniquement des informations du temps présent, pas des informations issues du passé. Cependant ces différentes versions de perte de mémoire sont proches d'un point de vue théorique. Considérons une variable aléatoire discrète sur l'ensemble des entiers naturels . La loi de est dite sans mémoire si pour tous , on a Ici, le terme est la probabilité conditionnelle que la variable soit plus grande que sachant qu'elle est plus grande que .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.