Produit de CauchyEn analyse, le produit de Cauchy est une opération portant sur certaines séries. Il permet de généraliser la propriété de distributivité. Son nom est un hommage à l'analyste français Augustin Louis Cauchy. Il s'agit d'un produit de convolution discret. Une écriture particulière des coefficients du produit de polynômes permet de comprendre l'introduction de la formule du produit de Cauchy. Soient deux polynômes à coefficients complexes P et Q donnés par leur décomposition dans la base canonique où les coefficients de P et de Q sont nuls à partir d'un certain rang.
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
1 + 2 + 4 + 8 + ⋯En mathématiques, est la série infinie dont les termes sont les puissances successives de 2. Comme une série géométrique, elle se caractérise par son premier terme, 1, et sa raison, 2. Comme une série de nombres réels, elle diverge vers l'infini, donc dans le sens usuel, elle n'a pas de somme. Dans un sens beaucoup plus large, la série est associée à une autre valeur en dehors de ∞, à savoir –1. Les sommes partielles de sont Puisque celles-ci divergent à l'infini, la série diverge aussi vers l'infini.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
1 + 1 + 1 + 1 + ⋯En mathématiques, 1 + 1 + 1 + 1 + ⋯, également écrit , ou simplement , est une série divergente, ce qui signifie que la suite de ses sommes partielles ne converge pas vers une limite dans les nombres réels. La suite (1n) est la suite géométrique de raison 1. La série géométrique de raison 1, à la différence de toutes les autres de raison rationnelle différente de −1, ne converge ni dans les réels, ni dans les nombres p-adiques pour certains p. Dans la droite réelle achevée, puisque la suite des sommes partielles est croissante et non majorée.
Série alternée des entiersvignette|Les premiers milliers de termes et de sommes partielles de 1 − 2 + 3 − 4 + ... En mathématiques, la série alternée des entiers est la série associée à la suite des nombres entiers (strictement positifs), affectés de signes alternés. Les sommes partielles de cette série peuvent donc s'écrire sous la forme : Cette série est divergente car la suite des sommes partielles est une suite divergente et n'admet donc pas de limite finie.
1 − 2 + 4 − 8 + ⋯In mathematics, 1 − 2 + 4 − 8 + ⋯ is the infinite series whose terms are the successive powers of two with alternating signs. As a geometric series, it is characterized by its first term, 1, and its common ratio, −2. As a series of real numbers it diverges, so in the usual sense it has no sum. In a much broader sense, the series is associated with another value besides ∞, namely 1/3, which is the limit of the series using the 2-adic metric. Gottfried Leibniz considered the divergent alternating series 1 − 2 + 4 − 8 + 16 − ⋯ as early as 1673.
Sommation de Ramanujanvignette|redresse=2|alt=Photographie noir et blanc d'un texte manuscrit, formant une démonstration mathématique.|Une sommation de Ramanujan, dans son premier cahier, montrant pourquoi la somme de tous les entiers est égale à -1/12. En analyse, la sommation de Ramanujan est une technique inventée par le mathématicien Srinivasa Ramanujan pour donner une valeur aux séries infinies divergentes.
Sommation de CesàroEn analyse, la sommation de Cesàro est un procédé de sommation permettant d'assigner une somme à certaines séries divergentes au sens usuel. Si la série est convergente au sens usuel, elle l'est également au sens de Cesàro et sa somme de Cesàro est égale à sa somme « classique ». En revanche, une série divergente peut avoir une somme de Cesàro bien définie. La sommation de Cesàro porte le nom de l'analyste italien Ernesto Cesàro (1859–1906), à cause de l’utilisation de ce qu'on appelle aujourd’hui le lemme de Cesàro.
Série géométriquethumb|Preuve sans mots de l'égalité1/2 + 1/4 + 1/8 + 1/16 + ⋯ = 1 thumb|Illustration de l'égalité 1/4 + 1/16 + 1/64 + 1/256 + ⋯ = 1/3 :chacun des carrés violets mesure 1/4 de la surface du grand carré le plus proche (1/2× = 1/4, 1/4×1/4 = 1/16, etc.). Par ailleurs, la somme des aires des carrés violets est égale à un tiers de la superficie du grand carré. En mathématiques, la série géométrique est l'un des exemples de série numérique les plus simples.